Mostrar el registro sencillo del ítem
dc.contributor.author
Bastidas Briceño, Ruby Carolina
dc.contributor.author
Fernandez, Victoria Ines
dc.contributor.author
Alonso, Roberto Emilio
dc.date.available
2024-04-22T10:58:00Z
dc.date.issued
2023-03
dc.identifier.citation
Bastidas Briceño, Ruby Carolina; Fernandez, Victoria Ines; Alonso, Roberto Emilio; Band alignment study at the SrTaO2N / H2O interface varying lattice constants and surface termination from first-principles calculations; Elsevier; Computational Condensed Matter; 34; 3-2023; 1-7
dc.identifier.issn
2352-2143
dc.identifier.uri
http://hdl.handle.net/11336/233654
dc.description.abstract
In the search for new renewable energy to replace fossil fuels, Hydrogen is one of the most promising candidates for clean energy production. But cheap Hydrogen separation and storage is still a big challenge. Photoelectrochemical devices look promising for the decomposition of the water molecule into 2H2 + O2. Every day new materials and combinations are discovered or invented to improve the efficiency of the complex total process. A necessary condition for the photoelectrochemical process to work without a bias voltage is that the minimum of the semiconductor conduction band must be more positive than the reduction potential H+ to H2, whereas the maximum of the semiconductor valence band must be more negative than the oxidation potential of H2O to O2. Thus, band alignment studies in interfaces of semiconductors with water become of vital importance. In this work, first-principles calculations based on density–functional theory (DFT) in the all-electron and the pseudo-potential approaches have been performed for the analysis of the band alignment in SrTaO2N/H2O interfaces. Different surface orientations were analyzed, together with the dependence of the gap and band alignment with lattice constants for systems grown on mismatched substrates. Water structures were built from classical molecular dynamics and its electronic structure calculated using DFT. The calculations show that the SrTaO2N (001) is suitable for photoelectrochemical applications on a wide range of lattice constant a, except for a compression/elongation of −2%, −1% and 3%, while SrTaO2N (110) results suitable for photoelectrochemical devices over a wider range of lattice constants from −1% to 3%.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AB INITIO CALCULATIONS
dc.subject
HYDROGEN PRODUCTION
dc.subject
PHOTOELECTROCHEMICAL
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Band alignment study at the SrTaO2N / H2O interface varying lattice constants and surface termination from first-principles calculations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-19T12:16:36Z
dc.journal.volume
34
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Bastidas Briceño, Ruby Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.description.fil
Fil: Fernandez, Victoria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.description.fil
Fil: Alonso, Roberto Emilio. Universidad Nacional Arturo Jauretche. Instituto de Ingeniería y Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.journal.title
Computational Condensed Matter
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352214323000011
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cocom.2023.e00784
Archivos asociados