Mostrar el registro sencillo del ítem

dc.contributor.author
Tchakoua, Theophile  
dc.contributor.author
Powell, Andrew D.  
dc.contributor.author
Gerrits, Nick  
dc.contributor.author
Somers, Mark F.  
dc.contributor.author
Doblhoff Dier, Katharina  
dc.contributor.author
Busnengo, Heriberto Fabio  
dc.contributor.author
Kroes, Geert Jan  
dc.date.available
2024-04-19T13:12:04Z  
dc.date.issued
2023-03  
dc.identifier.citation
Tchakoua, Theophile; Powell, Andrew D.; Gerrits, Nick; Somers, Mark F.; Doblhoff Dier, Katharina; et al.; Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics; American Chemical Society; Journal of Physical Chemistry C; 127; 11; 3-2023; 5395-5407  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/233569  
dc.description.abstract
We evaluate the importance of quantum effects on the sticking of H2on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2+ Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
SUPERFICIES  
dc.subject
ABINITIO  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simulating Highly Activated Sticking of H2on Al(110): Quantum versus Quasi-Classical Dynamics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-19T12:17:41Z  
dc.journal.volume
127  
dc.journal.number
11  
dc.journal.pagination
5395-5407  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Tchakoua, Theophile. Leiden University; Países Bajos  
dc.description.fil
Fil: Powell, Andrew D.. Leiden University; Países Bajos  
dc.description.fil
Fil: Gerrits, Nick. Leiden University; Países Bajos  
dc.description.fil
Fil: Somers, Mark F.. Leiden University; Países Bajos  
dc.description.fil
Fil: Doblhoff Dier, Katharina. Leiden University; Países Bajos  
dc.description.fil
Fil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.description.fil
Fil: Kroes, Geert Jan. Leiden University; Países Bajos  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.3c00426