Mostrar el registro sencillo del ítem
dc.contributor.author
Giuntini, Roberto
dc.contributor.author
Holik, Federico Hernán
dc.contributor.author
Park, Daniel K.
dc.contributor.author
Freytes, Hector
dc.contributor.author
Blank, Carsten
dc.contributor.author
Sergioli, Giuseppe
dc.date.available
2024-04-19T10:43:56Z
dc.date.issued
2023-02
dc.identifier.citation
Giuntini, Roberto; Holik, Federico Hernán; Park, Daniel K.; Freytes, Hector; Blank, Carsten; et al.; Quantum-inspired algorithm for direct multi-class classification; Elsevier Science; Applied Soft Computing; 134; 2-2023; 1-9
dc.identifier.issn
1568-4946
dc.identifier.uri
http://hdl.handle.net/11336/233511
dc.description.abstract
Over the last few decades, quantum machine learning has emerged as a groundbreaking discipline.Harnessing the peculiarities of quantum computation for machine learning tasks offers promisingadvantages. Quantum-inspired machine learning has revealed how relevant benefits for machinelearning problems can be obtained using the quantum information theory even without employingquantum computers. In the recent past, experiments have demonstrated how to design an algorithmfor binary classification inspired by the method of quantum state discrimination, which exhibits highperformance with respect to several standard classifiers. However, a generalization of this quantuminspired binary classifier to a multi-class scenario remains nontrivial. Typically, a simple solutionin machine learning decomposes multi-class classification into a combinatorial number of binaryclassifications, with a concomitant increase in computational resources. In this study, we introducea quantum-inspired classifier that avoids this problem. Inspired by quantum state discrimination, ourclassifier performs multi-class classification directly without using binary classifiers. We first comparedthe performance of the quantum-inspired multi-class classifier with eleven standard classifiers. Thecomparison revealed an excellent performance of the quantum-inspired classifier. Comparing theseresults with those obtained using the decomposition in binary classifiers shows that our methodimproves the accuracy and reduces the time complexity. Therefore, the quantum-inspired machinelearning algorithm proposed in this work is an effective and efficient framework for multi-classclassification. Finally, although these advantages can be attained without employing any quantumcomponent in the hardware, we discuss how it is possible to implement the model in quantumhardware.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
QUANTUM-INSPIRED MACHINE LEARNING
dc.subject
MULTI-CLASS CLASSIFICATION
dc.subject
QUANTUM INFORMATION
dc.subject
PRETTY GOOD MEASUREMENTS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quantum-inspired algorithm for direct multi-class classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-17T13:09:41Z
dc.journal.volume
134
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Giuntini, Roberto. Università Degli Studi Di Cagliari.; Italia
dc.description.fil
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
dc.description.fil
Fil: Park, Daniel K.. Yonsei University; Corea del Sur
dc.description.fil
Fil: Freytes, Hector. Università Degli Studi Di Cagliari.; Italia
dc.description.fil
Fil: Blank, Carsten. No especifíca;
dc.description.fil
Fil: Sergioli, Giuseppe. Università Degli Studi Di Cagliari.; Italia
dc.journal.title
Applied Soft Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1568494622010055
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.asoc.2022.109956
Archivos asociados