Mostrar el registro sencillo del ítem

dc.contributor.author
Rossi, Gianina B.  
dc.contributor.author
Lozano, Valeria Antonella  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2024-04-18T11:56:17Z  
dc.date.issued
2023-02  
dc.identifier.citation
Rossi, Gianina B.; Lozano, Valeria Antonella; Olivieri, Alejandro Cesar; Spectral pre-processing and non-linear calibration with convolutional kernel partial least-squares. Teaching new tricks to an old dog; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 233; 2-2023; 1-8  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/233415  
dc.description.abstract
A recent trend in multivariate calibration of non-linear systems is to simplify data processing models, avoiding, if possible, some complex deep learning approaches. Contributing to this line of work, convolutional kernel partial least-squares (CKPLS) is introduced both for finding the best spectral pre-processing procedure for reducing the impact of radiation scattering and for handling non-linearities in the data. CKPLS is a combination of a previous convolutional step for pre-processing the spectra with the well-known kernel PLS regression model for coping with non-linear relationships between spectral signatures and analyte concentrations or target sample properties. The convolutional step is driven by particle swarm optimization (PSO), which estimates the coefficients of a moving window spectral pre-processing. This convolutional phase, previous to KPLS, is a viable alternative to the few available methods for finding the best mathematical pre-processing of the spectra, which is usually performed by trial and error. Analytical results concerning the calibration of selected analytes from partially selective spectra are employed to illustrate the performance of CKPLS. For this purpose, both simulated and experimental data sets have been employed, showing that automatic pre-processing of spectra is possible, with a success which is comparable to classical methods such as computing the spectral derivatives.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONVOLUTIONAL KERNEL PARTIAL LEAST-SQUARES  
dc.subject
MATHEMATICAL PRE-PROCESSING  
dc.subject
NEAR INFRARED SPECTRA  
dc.subject
NON-LINEAR CALIBRATION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spectral pre-processing and non-linear calibration with convolutional kernel partial least-squares. Teaching new tricks to an old dog  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-17T12:54:14Z  
dc.journal.volume
233  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Rossi, Gianina B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Lozano, Valeria Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743922002477  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2022.104736