Mostrar el registro sencillo del ítem

dc.contributor.author
Celani, Sergio Arturo  
dc.contributor.author
Rivieccio, Umberto  
dc.date.available
2024-04-16T12:41:58Z  
dc.date.issued
2023-08  
dc.identifier.citation
Celani, Sergio Arturo; Rivieccio, Umberto; Intuitionistic Modal Algebras; Springer; Studia Logica; 2023; 8-2023; 1-50  
dc.identifier.issn
0039-3215  
dc.identifier.uri
http://hdl.handle.net/11336/233178  
dc.description.abstract
Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
FRAGMENTS  
dc.subject
IMPLICATIVE SEMILATTICES  
dc.subject
INTUITIONISTIC MODAL ALGEBRAS  
dc.subject
NUCLEAR HEYTING ALGEBRAS  
dc.subject
NUCLEI  
dc.subject
QUASI-NELSON ALGEBRAS  
dc.subject
REPRESENTATION  
dc.subject
TOPOLOGICAL DUALITY  
dc.subject
WEAK HEYTING ALGEBRAS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Intuitionistic Modal Algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-08T11:27:08Z  
dc.identifier.eissn
1572-8730  
dc.journal.volume
2023  
dc.journal.pagination
1-50  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Rivieccio, Umberto. Universidad Nacional de Educación a Distancia; España  
dc.journal.title
Studia Logica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-023-10065-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-023-10065-2