Mostrar el registro sencillo del ítem
dc.contributor.author
Celani, Sergio Arturo
dc.contributor.author
Rivieccio, Umberto
dc.date.available
2024-04-16T12:41:58Z
dc.date.issued
2023-08
dc.identifier.citation
Celani, Sergio Arturo; Rivieccio, Umberto; Intuitionistic Modal Algebras; Springer; Studia Logica; 2023; 8-2023; 1-50
dc.identifier.issn
0039-3215
dc.identifier.uri
http://hdl.handle.net/11336/233178
dc.description.abstract
Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
FRAGMENTS
dc.subject
IMPLICATIVE SEMILATTICES
dc.subject
INTUITIONISTIC MODAL ALGEBRAS
dc.subject
NUCLEAR HEYTING ALGEBRAS
dc.subject
NUCLEI
dc.subject
QUASI-NELSON ALGEBRAS
dc.subject
REPRESENTATION
dc.subject
TOPOLOGICAL DUALITY
dc.subject
WEAK HEYTING ALGEBRAS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Intuitionistic Modal Algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-08T11:27:08Z
dc.identifier.eissn
1572-8730
dc.journal.volume
2023
dc.journal.pagination
1-50
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
dc.description.fil
Fil: Rivieccio, Umberto. Universidad Nacional de Educación a Distancia; España
dc.journal.title
Studia Logica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-023-10065-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-023-10065-2
Archivos asociados