Mostrar el registro sencillo del ítem

dc.contributor.author
Abril Pla, Oriol  
dc.contributor.author
Andreani, Virgile  
dc.contributor.author
Carroll, Colin  
dc.contributor.author
Dong, Larry  
dc.contributor.author
Fonnesbeck, Christopher J.  
dc.contributor.author
Kochurov, Maxim  
dc.contributor.author
Kumar, Ravin  
dc.contributor.author
Lao, Junpeng  
dc.contributor.author
Luhmann, Christian C.  
dc.contributor.author
Martín, Osvaldo Antonio  
dc.contributor.author
Osthege, Michael  
dc.contributor.author
Vieira, Ricardo  
dc.contributor.author
Wiecki, Thomas  
dc.contributor.author
Zinkov, Robert  
dc.date.available
2024-04-15T09:42:44Z  
dc.date.issued
2023-08  
dc.identifier.citation
Abril Pla, Oriol; Andreani, Virgile; Carroll, Colin; Dong, Larry; Fonnesbeck, Christopher J.; et al.; PyMC: a modern, and comprehensive probabilistic programming framework in Python; PeerJ Inc.; PeerJ Computer Science; 9; 8-2023; 1-36  
dc.identifier.issn
2376-5992  
dc.identifier.uri
http://hdl.handle.net/11336/232919  
dc.description.abstract
PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
PeerJ Inc.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bayesian statistics  
dc.subject
Probabilistic programming  
dc.subject
Python  
dc.subject
Markov chain Monte Carlo  
dc.subject
Statistical modeling  
dc.subject
BAYESIAN STATISTICS  
dc.subject
PROBABILISTIC PROGRAMMING  
dc.subject
PYTHON  
dc.subject
MARKOV CHAIN MONTE CARLO,  
dc.subject
STATISTICAL MODELING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
PyMC: a modern, and comprehensive probabilistic programming framework in Python  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-19T10:34:29Z  
dc.journal.volume
9  
dc.journal.pagination
1-36  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Abril Pla, Oriol. No especifíca;  
dc.description.fil
Fil: Andreani, Virgile. Boston University; Estados Unidos  
dc.description.fil
Fil: Carroll, Colin. Google Limited Liability Company (google Llc);  
dc.description.fil
Fil: Dong, Larry. University of Toronto; Canadá  
dc.description.fil
Fil: Fonnesbeck, Christopher J.. No especifíca;  
dc.description.fil
Fil: Kochurov, Maxim. No especifíca;  
dc.description.fil
Fil: Kumar, Ravin. Google Limited Liability Company (google Llc);  
dc.description.fil
Fil: Lao, Junpeng. Google Limited Liability Company (google Llc);  
dc.description.fil
Fil: Luhmann, Christian C.. State University of New York. Stony Brook University; Estados Unidos  
dc.description.fil
Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Osthege, Michael. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania  
dc.description.fil
Fil: Vieira, Ricardo. No especifíca;  
dc.description.fil
Fil: Wiecki, Thomas. No especifíca;  
dc.description.fil
Fil: Zinkov, Robert. University of Oxford; Reino Unido  
dc.journal.title
PeerJ Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7717/peerj-cs.1516  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-1516/