Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
San Martín, Hernán Javier  
dc.contributor.author
Sígal, Valeria Anahí  
dc.date.available
2024-04-12T14:16:04Z  
dc.date.issued
2023-11-10  
dc.identifier.citation
Cornejo, Juan Manuel; San Martín, Hernán Javier; Sígal, Valeria Anahí; On a class of subreducts of the variety of integral srl-monoids and related logics; Springer; Studia Logica; 2023; 10-11-2023  
dc.identifier.issn
0039-3215  
dc.identifier.uri
http://hdl.handle.net/11336/232888  
dc.description.abstract
An integral subresiduated lattice ordered commutative monoid (or integral srl-monoid for short) is a pair where is a lattice ordered commutative monoid, 1 is the greatest element of the lattice and Q is a subalgebra of A such that for each the set has maximum, which will be denoted by . The integral srl-monoids can be regarded as algebras of type (2, 2, 2, 2, 0). Furthermore, this class of algebras is a variety which properly contains the varieties of integral commutative residuated lattices and subresiduated lattices respectively. In this paper we study the quasivariety of -subreducts of integral srl-monoids, which will be denoted by . In particular, we show that is a variety. We also characterize simple and subdirectly irreducible algebras of respectively. Finally, through a Hilbert style system, we present a logic which has as algebraic semantics the variety and we apply this result in order to present an expansion of the previous logic which has as algebraic semantics the variety of integral srl-monoids.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SUBRESIDUATED LATTICES  
dc.subject
INTEGRAL COMMUTATIVE RESIDUATES LATTICES  
dc.subject
INTEGRAL SRL-MONOIDS  
dc.subject
SUBREDUCTS OF INTEGRAL  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On a class of subreducts of the variety of integral srl-monoids and related logics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-08T14:14:29Z  
dc.journal.volume
2023  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.description.fil
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Sígal, Valeria Anahí. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.journal.title
Studia Logica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-023-10074-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-023-10074-1