Artículo
Sparse approximation using new greedy-like bases in superreflexive spaces
Fecha de publicación:
04/2023
Editorial:
Polish Academy of Sciences. Institute of Mathematics
Revista:
Studia Mathematica
ISSN:
0039-3223
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is devoted to theoretical aspects of optimality of sparse approximation. We undertake a quantitative study of new types of greedy-like bases that have recently arisen in the context of non-linear m-term approximation in Banach spaces as a generalization of the properties that characterize almost greedy bases, i.e., quasi-greediness and democracy. As a means to compare the efficiency of these new bases with already existing ones in regard to the implementation of the Thresholding Greedy Algorithm, we place emphasis on obtaining estimates for their sequence of unconditionality parameters. Using an enhanced version of the original Dilworth–Kalton–Kutzarova method (2003) for building almost greedy bases, we manage to construct bidemocratic bases whose unconditionality parameters satisfy significantly worse estimates than almost greedy bases even in Hilbert spaces.
Palabras clave:
SUPERREFLEXIVE
,
TRUNCATION QUASI-GREEDY
,
SUBSYMMETRIC
,
BIDEMOCRATIC
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Albiac, Fernando; Ansorena, José L.; Berasategui, Miguel Hernán; Sparse approximation using new greedy-like bases in superreflexive spaces; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 271; 3; 4-2023; 321-346
Compartir
Altmétricas