Artículo
Unveiling exotic magnetic phases in Fibonacci quasicrystals through machine learning
Fecha de publicación:
10/2023
Editorial:
American Physical Society
Revista:
Physical Review B
ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this study, we present a comprehensive theoretical analysis of magnetic Fibonacci quasicrystals, which could potentially be realized through the stacking of ferromagnetic van der Waals layers. We introduce a model that incorporates up to second-neighbor interlayer magnetic interactions and displays a complex interplay between geometric frustration and magnetic order. To explore the parameter space and identify distinct magnetic phases, we employ a machine learning approach. This methodology proves effective in elucidating the intricate magnetic behavior of the system. We offer a detailed magnetic phase diagram as a function of the model parameters and notably discover a unique ferromagnetic alternating helical phase among other collinear and noncollinear phases. In this noncollinear, quasiperiodic, and ferromagnetic configuration, the magnetization decreases logarithmically with the stack height.
Palabras clave:
QUASICRYSTAL
,
MAGNETISM
,
MACHINE LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Cornaglia de la Cruz, Pablo Sebastian; Nuñez, Matias; Garcia, Daniel Julio; Unveiling exotic magnetic phases in Fibonacci quasicrystals through machine learning; American Physical Society; Physical Review B; 108; 14; 10-2023; 1-11
Compartir
Altmétricas