Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Performance of short-terms prediction methods of vertical total electron content using nonlinear autoregressive neuronal network and stochastic autoregressive model

Natali, Maria PaulaIcon ; Meza, Amalia MargaritaIcon
Fecha de publicación: 06/2023
Editorial: Elsevier
Revista: Advances in Space Research
ISSN: 0273-1177
e-ISSN: 1879-1948
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

In this contribution the performance of global short-term predictions methods of vertical total electron content (vTEC) is analyzed during high solar activity. Two kind of predicted global vTEC maps value every 1 h, one-day-ahead, are used. They are C1PG, produced by the Center for Orbit Determination in Europe (CODE), based on the extrapolation of Spherical Harmonic coefficient using Leastsquares collocation and the M1PG, proposed in this work, based on multi-step Nonlinear Autoregressive Neural Network (NAR-NN). Global vTEC maps from CODE (CODG) along the year 2015, are used as reference data. The results are obtained for quiet and disturbed conditions, based on geomagnetic and ionospheric planetary indexes. The performance of the forecasting approach is extensively tested under different geospatial conditions. The testing results are very similar in terms of RMSE, as it has been found to range between 1.7 and 7 TECu. RMSE depend on the latitude sectors and geomagnetic conditions, in terms of Mean Forecast Error (MFE) the C1PG shows a clear systematic behavior being negative at Southern Hemisphere and positive at Northern Hemisphere. According to the Mean Absolute Percentage Error (MAPE) values, the relative behavior of vTEC prediction is better for M1PG than for C1PG specially during quiet days and at mid-high latitudes. In general, both models are less accuracy in the equatorial ionization anomaly region and the Southern Hemisphere. Other important contribution of this manuscript is the definition of a planetary ionospheric disturbance index, W d , based on W-index. This parameter is useful to more complete definition in quiet and disturbed days selection, and it is shown that the dependence of the RMSE according to the latitudinal bands, it is strongly related with the respective value of W d .
Palabras clave: vtec , space weather , forecasting , neural networks
Ver el registro completo
 
Archivos asociados
Tamaño: 7.417Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/232474
URL: https://www.sciencedirect.com/science/article/pii/S0273117723005707
DOI: http://dx.doi.org/10.1016/j.asr.2023.07.035
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Natali, Maria Paula; Meza, Amalia Margarita; Performance of short-terms prediction methods of vertical total electron content using nonlinear autoregressive neuronal network and stochastic autoregressive model; Elsevier; Advances in Space Research; 72; 9; 6-2023; 3919-3932
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES