Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A general non-Fourier Stefan problem formulation that accounts for memory effects

Voller, Vaughan R.; Roscani, Sabrina DinaIcon
Fecha de publicación: 03/2023
Editorial: Pergamon-Elsevier Science Ltd
Revista: International Journal Of Heat And Mass Transfer
ISSN: 0017-9310
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

The Stefan problem is the classical model of a melting phase change. In heterogeneous systems, such phase changes can exhibit non-Fourier (anomalous) behaviors, where the advance of the melt interface does not follow the expected time scaling. These situations can be modeled by replacing the derivatives, in the governing partial differential equations, with fractional order derivatives. In particular, replacing the time derivatives leads to non-Fourier models that account for memory effects in the system. In this work, by using appropriate time convolution integrals, a general thermodynamic balance statement for melting phase problems, explicitly accounting for memory effects, is developed. From this balance, a gen- eral model formulation applicable to problems involving melting over a temperature range (i.e., a mushy region) is derived. A key component in this model is the representation of memory effects through the use of fractional derivative based constitutive models of the enthalpy and heat flux. On shrinking the mushy region to a single isotherm, a general sharp interface melting model is obtained. Here, in con- trast to the classic Stefan problem, the fractional derivatives induce a natural regularization, such that the constitutive models for enthalpy and heat flux are continuous at the melt interface; a result con- firmed through numerical simulation. To further support the theoretical findings, a physical example of a non-Fourier Stefan problem is presented. Overall the development and results in this paper underscore the importance of explicitly relating the development of fractional calculus models to the appropriate thermodynamic balance statements.
Palabras clave: STEFAN PROBLEM , MEMORY EFFECT , FRACTIONAL DERIVATIVE , ENTHALPY METHOD
Ver el registro completo
 
Archivos asociados
Tamaño: 989.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/232366
URL: https://www.sciencedirect.com/science/article/pii/S0017931023002478
DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124094
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Voller, Vaughan R.; Roscani, Sabrina Dina; A general non-Fourier Stefan problem formulation that accounts for memory effects; Pergamon-Elsevier Science Ltd; International Journal Of Heat And Mass Transfer; 209; 3-2023; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES