Mostrar el registro sencillo del ítem

dc.contributor.author
Celani, Sergio Arturo  
dc.contributor.author
San Martín, Hernán Javier  
dc.date.available
2024-04-08T13:25:36Z  
dc.date.issued
2023-05  
dc.identifier.citation
Celani, Sergio Arturo; San Martín, Hernán Javier; On the variety of strong subresiduated lattices; Wiley VCH Verlag; Mathematical Logic Quarterly; 69; 2; 5-2023; 207-220  
dc.identifier.issn
0942-5616  
dc.identifier.uri
http://hdl.handle.net/11336/232345  
dc.description.abstract
A subresiduated lattice is a pair (, ), where is a bounded distributive lattice, is a bounded sublattice of and for every , ∈ there exists the maximum of the set { ∈ ∶ ∧ ≤ }, which is denoted by →. This pair can be regarded as an algebra (, ∧, ∨, →, 0, 1) of type (2, 2, 2, 0, 0), where = { ∈ ∶ 1 → = }. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by S□, whose members satisfy the equation 1 → ( ∨ ) = (1 → ) ∨ (1 → ). Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition → ∈ {1 → , 1} for every , are satisfied, we also study the subvariety of S□ generated by the class whose members satisfy that → ∈ {1 → , 1} for every , .  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Subresiduated lattice  
dc.subject
Modal operator  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the variety of strong subresiduated lattices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-08T11:26:11Z  
dc.journal.volume
69  
dc.journal.number
2  
dc.journal.pagination
207-220  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina  
dc.description.fil
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Mathematical Logic Quarterly  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/malq.202200067  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/malq.202200067