Artículo
A Study on Some Classes of Distributive Lattices with a Generalized Implication
Fecha de publicación:
11/2023
Editorial:
Springer
Revista:
Order
ISSN:
0167-8094
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A generalized implication on a distributive lattice A is a function between A× A to ideals of A satisfying similar conditions to strict implication of weak Heyting algebras. Relative anihilators and quasi-modal operators are examples of generalized implication in distributive lattices. The aim of this paper is to study some classes of distributive lattices with a generalized implication. In particular, we prove that the class of Boolean algebras endowed with a quasi-modal operator is equivalent to the class of Boolean algebras with a generalized implication. This equivalence allow us to give another presentation of the class of quasi-monadic algebras and the class of compingent algebras defined by H. De Vries. We also introduce the notion of gi-sublattice and we characterize the simple and subdirectly irreducible distributive lattices with a generalized implication through topological duality.
Palabras clave:
GENERALIZED IMPLICATION
,
QUASI-MODAL OPERATOR
,
WH-ALGEBRA
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Calomino, Ismael Maria; Castro, Jorge; Celani, Sergio Arturo; Valenzuela Jimenez, Paula Luciana; A Study on Some Classes of Distributive Lattices with a Generalized Implication; Springer; Order; 11-2023; 1-21
Compartir
Altmétricas