Mostrar el registro sencillo del ítem
dc.contributor.author
Lerner, Andrei K.
dc.contributor.author
Lorist, Emiel
dc.contributor.author
Ombrosi, Sheldy Javier
dc.date.available
2024-04-08T12:32:14Z
dc.date.issued
2024-04-30
dc.identifier.citation
Lerner, Andrei K.; Lorist, Emiel; Ombrosi, Sheldy Javier; BMO with respect to Banach function spaces; Springer; Mathematische Annalen; 338; 30-4-2024; 4053–4082
dc.identifier.issn
0025-5831
dc.identifier.uri
http://hdl.handle.net/11336/232291
dc.description.abstract
For every cube Q ⊂ ℝⁿ we let X_Q be a quasi-Banach function space over Q such that ||χ_Q||_{X_Q} ≃ 1, and for X = {X_Q} define:
||f||{BMO_X} := sup_Q ||f - (1/|Q|)∫_Q f ||{X_Q},
||f||{BMO_X*} := sup_Q inf_c ||f - c||{X_Q}.
We study necessary and sufficient conditions on X such that BMO = BMO_X = BMO_X*.
In particular, we give a full characterization of the embedding BMO ↪ BMO_X in terms of so-called sparse collections of cubes, and we give easily checkable and rather weak sufficient conditions for the embedding BMO_X* ↪ BMO. Our main theorems recover and improve all previously known results in this area.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BMO
dc.subject
BANACH
dc.subject
SPARSE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
BMO with respect to Banach function spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-15T14:44:12Z
dc.journal.volume
338
dc.journal.pagination
4053–4082
dc.journal.pais
Alemania
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Lerner, Andrei K.. Bar-ilan University; Israel
dc.description.fil
Fil: Lorist, Emiel. Helsingin Yliopisto; Finlandia
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Universidad Complutense de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Mathematische Annalen
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-023-02628-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-023-02628-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2204.11099
Archivos asociados