Mostrar el registro sencillo del ítem
dc.contributor.author
Bruzzone, Octavio Augusto
dc.contributor.author
Perri, Daiana Vanesa
dc.contributor.author
Easdale, Marcos Horacio
dc.date.available
2024-04-08T10:12:48Z
dc.date.issued
2023-03
dc.identifier.citation
Bruzzone, Octavio Augusto; Perri, Daiana Vanesa; Easdale, Marcos Horacio; Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach; Elsevier Science; Ecological Informatics; 73; 3-2023; 1-23
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/232225
dc.description.abstract
Vegetation responses to variation in climate are a current research priority in the context of accelerated shifts generated by climate change. However, the interactions between environmental and biological factors still represent one of the largest uncertainties in projections of future scenarios, since the relationship between drivers and ecosystem responses has a complex and nonlinear nature. We aimed to develop a model to study the vegetation´s primary productivity dynamic response to temporal variations in climatic conditions as measured by rainfall, temperature and radiation. Thus, we propose a new way to estimate the vegetation response to climate via a non-autonomous version of a classical growth curve, with a time-varying growth rate and carrying capacity parameters according to climate variables. With a Sequential Monte Carlo Estimation to account for complexities in the climate-vegetation relationship to minimize the number of parameters. The model was applied to six key sites identified in a previous study, consisting of different arid and semiarid rangelands from North Patagonia, Argentina. For each site, we selected the time series of MODIS NDVI, and climate data from ERA5 Copernicus hourly reanalysis from 2000 to 2021. After calculating the time series of the a posteriori distribution of parameters, we analyzed the explained capacity of the model in terms of the linear coefficient of determination and the parameters distribution variation. Results showed that most rangelands recorded changes in their sensitivity over time to climatic factors, but vegetation responses were heterogeneous and influenced by different drivers. Differences in this climate-vegetation relationship were recorded among different cases: (1) a marginal and decreasing sensitivity to temperature and radiation, respectively, but a high sensitivity to water availability; (2) high and increasing sensitivity to temperature and water availability, respectively; and (3) a case with an abrupt shift in vegetation dynamics driven by a progressively decreasing sensitivity to water availability, without any changes in the sensitivity either to temperature or radiation. Finally, we also found that the time scale, in which the ecosystem integrated the rainfall phenomenon in terms of the width of the window function used to convolve the rainfall series into a water availability variable, was also variable in time. This approach allows us to estimate the connection degree between ecosystem productivity and climatic variables. The capacity of the model to identify changes over time in the vegetation-climate relationship might inform decision-makers about ecological transitions and the differential impact of climatic drivers on ecosystems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Drylands
dc.subject
Climate change
dc.subject
NDVI
dc.subject
Rangelands
dc.subject
Time series analysis
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-05T12:28:39Z
dc.journal.volume
73
dc.journal.pagination
1-23
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1574954122003636
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2022.101913
Archivos asociados