Artículo
Microbial glucoamylases: structural and functional properties and biotechnological uses
Fecha de publicación:
11/2023
Editorial:
Springer
Revista:
World Journal of Microbiology
ISSN:
0959-3993
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Palabras clave:
BIOETHANOL
,
BIOPLASTICS
,
BIOTECHNOLOGICAL APPLICATIONS
,
FOOD
,
GLUCOAMYLASES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CEFOBI)
Articulos de CENTRO DE EST.FOTOSINTETICOS Y BIOQUIMICOS (I)
Articulos de CENTRO DE EST.FOTOSINTETICOS Y BIOQUIMICOS (I)
Citación
Wayllace, Natael Maximiliano; Martín, Mariana; Busi, María Victoria; Gomez Casati, Diego Fabian; Microbial glucoamylases: structural and functional properties and biotechnological uses; Springer; World Journal of Microbiology; 39; 11; 11-2023; 1-16
Compartir
Altmétricas