Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez, P.  
dc.contributor.author
Rey, Andrea Alejandra  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Armentano, R.  
dc.contributor.author
Legnani, Walter  
dc.date.available
2024-04-04T10:30:38Z  
dc.date.issued
2022-12  
dc.identifier.citation
Martínez, P.; Rey, Andrea Alejandra; Rosso, Osvaldo Aníbal; Armentano, R.; Legnani, Walter; Detection of cardiac arrhythmia patterns in ECG through H × C plane; American Institute of Physics; Chaos; 32; 12; 12-2022; 1-10  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/231842  
dc.description.abstract
The aim of this study is to formulate a new methodology based upon informational tools to detect patients with cardiac arrhythmias. As it is known, sudden death is the consequence of a final arrhythmia, and here lies the relevance of the efforts aimed at the early detection of arrhythmias. The information content in the time series from an electrocardiogram (ECG) signal is conveyed in the form of a probability distribution function, to compute the permutation entropy proposed by Bandt and Pompe. This selection was made seeking its remarkable conceptual simplicity, computational speed, and robustness to noise. In this work, two well-known databases were used, one containing normal sinus rhythms and another one containing arrhythmias, both from the MIT medical databank. For different values of embedding time delay τ, normalized permutation entropy and statistical complexity measure are computed to finally represent them on the horizontal and vertical axes, respectively, which define the causal plane H × C. To improve the results obtained in previous works, a feature set composed by these two magnitudes is built to train the following supervised machine learning algorithms: random forest (RF), support vector machine (SVM), and k nearest neighbors (kNN). To evaluate the performance of each classification technique, a 10-fold cross-validation scheme repeated 10 times was implemented. Finally, to select the best model, three quality parameters were computed, namely, accuracy, the area under the receiver operative characteristic (ROC) curve (AUC), and the F1-score. The results obtained show that the best classification model to detect the ECG coming from arrhythmic patients is RF. The values of the quality parameters were at the same levels reported in the available literature using a larger data set, thus supporting this proposal that uses a very small-sized feature space to train the model later used to classify. Summarizing, the attained results show the possibility to discriminate both groups of patients, with normal sinus rhythm or arrhythmic ECG, showing a promising efficiency in the definition of new markers for the detection of cardiovascular pathologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PERMUTATION ENTROPY  
dc.subject
EMBEDDING TIME DELAY  
dc.subject
ENTROPY-COMPLEXITY PLANE  
dc.subject
SIGNAL CLASSIFICATION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Sistemas Cardíaco y Cardiovascular  
dc.subject.classification
Medicina Clínica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Detection of cardiac arrhythmia patterns in ECG through H × C plane  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-03T13:38:13Z  
dc.identifier.eissn
1089-7682  
dc.journal.volume
32  
dc.journal.number
12  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Martínez, P.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Armentano, R.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Legnani, Walter. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/5.0118717  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0118717