Mostrar el registro sencillo del ítem
dc.contributor.author
Peterson, Victoria
dc.contributor.author
Kokkinos, Vasileios
dc.contributor.author
Ferrante, Enzo
dc.contributor.author
Walton, Ashley
dc.contributor.author
Merk, Timon
dc.contributor.author
Hadanny, Amir
dc.contributor.author
Saravanan, Varun
dc.contributor.author
Sisterson, Nathaniel
dc.contributor.author
Zaher, Naoir
dc.contributor.author
Urban, Alexandra
dc.contributor.author
Richardson, R. Mark
dc.date.available
2024-04-03T15:42:16Z
dc.date.issued
2023-06
dc.identifier.citation
Peterson, Victoria; Kokkinos, Vasileios; Ferrante, Enzo; Walton, Ashley; Merk, Timon; et al.; Deep net detection and onset prediction of electrographic seizure patterns in responsive neurostimulation; Wiley Blackwell Publishing, Inc; Epilepsia; 64; 8; 6-2023; 2056-2069
dc.identifier.issn
0013-9580
dc.identifier.uri
http://hdl.handle.net/11336/231817
dc.description.abstract
Objective Managing the progress of drug-resistant epilepsy patients implanted with the Responsive Neurostimulation (RNS) System requires the manual evaluation of hundreds of hours of intracranial recordings. The generation of these large amounts of data and the scarcity of experts' time for evaluation necessitate the development of automatic tools to detect intracranial electroencephalographic (iEEG) seizure patterns (iESPs) with expert-level accuracy. We developed an intelligent system for identifying the presence and onset time of iESPs in iEEG recordings from the RNS device. Methods An iEEG dataset from 24 patients (36 293 recordings) recorded by the RNS System was used for training and evaluating a neural network model (iESPnet). The model was trained to identify the probability of seizure onset at each sample point of the iEEG. The reliability of the net was assessed and compared to baseline methods, including detections made by the device. iESPnet performance was measured using balanced accuracy and the F1 score for iESP detection. The prediction time was assessed via both the error and the mean absolute error. The model was evaluated following a hold-one-out strategy, and then validated in a separate cohort of 26 patients from a different medical center. Results iESPnet detected the presence of an iESP with a mean accuracy value of 90% and an onset time prediction error of approximately 3.4 s. There was no relationship between electrode location and prediction outcome. Model outputs were well calibrated and unbiased by the RNS detections. Validation on a separate cohort further supported iESPnet applicability in real clinical scenarios. Importantly, RNS device detections were found to be less accurate and delayed in nonresponders; therefore, tools to improve the accuracy of seizure detection are critical for increasing therapeutic efficacy. Significance iESPnet is a reliable and accurate tool with the potential to alleviate the time-consuming manual inspection of iESPs and facilitate the evaluation of therapeutic response in RNS-implanted patients.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
RESPONSE NEUROSTIMULATION
dc.subject
INVASIVE EEG
dc.subject
DEEP LEARNING
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Deep net detection and onset prediction of electrographic seizure patterns in responsive neurostimulation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-06T11:01:51Z
dc.identifier.eissn
1528-1167
dc.journal.volume
64
dc.journal.number
8
dc.journal.pagination
2056-2069
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Kokkinos, Vasileios. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Walton, Ashley. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Merk, Timon. Harvard Medical School; Estados Unidos. Charité–Universitätsmedizin Berlin; Alemania
dc.description.fil
Fil: Hadanny, Amir. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Saravanan, Varun. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Sisterson, Nathaniel. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Zaher, Naoir. Epilepsy Center At Orlando Health; Estados Unidos
dc.description.fil
Fil: Urban, Alexandra. University of Pittsburgh; Estados Unidos
dc.description.fil
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos
dc.journal.title
Epilepsia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/epi.17666
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/epi.17666
Archivos asociados