Mostrar el registro sencillo del ítem

dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Kokkinos, Vasileios  
dc.contributor.author
Ferrante, Enzo  
dc.contributor.author
Walton, Ashley  
dc.contributor.author
Merk, Timon  
dc.contributor.author
Hadanny, Amir  
dc.contributor.author
Saravanan, Varun  
dc.contributor.author
Sisterson, Nathaniel  
dc.contributor.author
Zaher, Naoir  
dc.contributor.author
Urban, Alexandra  
dc.contributor.author
Richardson, R. Mark  
dc.date.available
2024-04-03T15:42:16Z  
dc.date.issued
2023-06  
dc.identifier.citation
Peterson, Victoria; Kokkinos, Vasileios; Ferrante, Enzo; Walton, Ashley; Merk, Timon; et al.; Deep net detection and onset prediction of electrographic seizure patterns in responsive neurostimulation; Wiley Blackwell Publishing, Inc; Epilepsia; 64; 8; 6-2023; 2056-2069  
dc.identifier.issn
0013-9580  
dc.identifier.uri
http://hdl.handle.net/11336/231817  
dc.description.abstract
Objective Managing the progress of drug-resistant epilepsy patients implanted with the Responsive Neurostimulation (RNS) System requires the manual evaluation of hundreds of hours of intracranial recordings. The generation of these large amounts of data and the scarcity of experts' time for evaluation necessitate the development of automatic tools to detect intracranial electroencephalographic (iEEG) seizure patterns (iESPs) with expert-level accuracy. We developed an intelligent system for identifying the presence and onset time of iESPs in iEEG recordings from the RNS device. Methods An iEEG dataset from 24 patients (36 293 recordings) recorded by the RNS System was used for training and evaluating a neural network model (iESPnet). The model was trained to identify the probability of seizure onset at each sample point of the iEEG. The reliability of the net was assessed and compared to baseline methods, including detections made by the device. iESPnet performance was measured using balanced accuracy and the F1 score for iESP detection. The prediction time was assessed via both the error and the mean absolute error. The model was evaluated following a hold-one-out strategy, and then validated in a separate cohort of 26 patients from a different medical center. Results iESPnet detected the presence of an iESP with a mean accuracy value of 90% and an onset time prediction error of approximately 3.4 s. There was no relationship between electrode location and prediction outcome. Model outputs were well calibrated and unbiased by the RNS detections. Validation on a separate cohort further supported iESPnet applicability in real clinical scenarios. Importantly, RNS device detections were found to be less accurate and delayed in nonresponders; therefore, tools to improve the accuracy of seizure detection are critical for increasing therapeutic efficacy. Significance iESPnet is a reliable and accurate tool with the potential to alleviate the time-consuming manual inspection of iESPs and facilitate the evaluation of therapeutic response in RNS-implanted patients.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RESPONSE NEUROSTIMULATION  
dc.subject
INVASIVE EEG  
dc.subject
DEEP LEARNING  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Deep net detection and onset prediction of electrographic seizure patterns in responsive neurostimulation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-06T11:01:51Z  
dc.identifier.eissn
1528-1167  
dc.journal.volume
64  
dc.journal.number
8  
dc.journal.pagination
2056-2069  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Kokkinos, Vasileios. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Walton, Ashley. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Merk, Timon. Harvard Medical School; Estados Unidos. Charité–Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Hadanny, Amir. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Saravanan, Varun. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Sisterson, Nathaniel. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Zaher, Naoir. Epilepsy Center At Orlando Health; Estados Unidos  
dc.description.fil
Fil: Urban, Alexandra. University of Pittsburgh; Estados Unidos  
dc.description.fil
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos  
dc.journal.title
Epilepsia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/epi.17666  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/epi.17666