Artículo
Conformal Bounds in Three Dimensions from Entanglement Entropy
Fecha de publicación:
03/2023
Editorial:
American Physical Society
Revista:
Physical Review Letters
e-ISSN:
1079-7114
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds. In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3Þ ≃ 0.14887 for general CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.
Palabras clave:
Conformal field theories
,
Renormalization group
,
CFT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Bueno, Pablo; Casini, Horacio German; Lasso Andino, Oscar; Moreno, Javier; Conformal Bounds in Three Dimensions from Entanglement Entropy; American Physical Society; Physical Review Letters; 131; 17; 3-2023; 1-7
Compartir
Altmétricas