Artículo
On inherent limitations in robustness and performance for a class of prescribed-time algorithms
Fecha de publicación:
12/2023
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Automatica
ISSN:
0005-1098
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Prescribed-time algorithms based on time-varying gains may have remarkable properties, such as regulation in a user-prescribed finite time that is the same for every nonzero initial condition and that holds even under matched disturbances. However, at the same time, such algorithms are known to lack robustness to measurement noise. This note shows that the lack of robustness of a class of prescribed-time algorithms is of an extreme form. Specifically, we show the existence of arbitrarily small measurement noises causing considerable deviations, divergence, and other detrimental consequences. We also discuss some drawbacks and trade-offs of existing workarounds as motivation for further analysis.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Aldana López, Rodrigo; Seeber, Richard; Haimovich, Hernan; Gómez Gutiérrez, David; On inherent limitations in robustness and performance for a class of prescribed-time algorithms; Pergamon-Elsevier Science Ltd; Automatica; 158; 12-2023; 1-6
Compartir
Altmétricas