Mostrar el registro sencillo del ítem

dc.contributor.author
Zoratto, Valeria  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Aranda, Gabriela Noemi  
dc.date.available
2024-03-25T12:55:41Z  
dc.date.issued
2023-09  
dc.identifier.citation
Zoratto, Valeria; Godoy, Daniela Lis; Aranda, Gabriela Noemi; A study on influential features for predicting best answers in community question-answering forums; MDPI; Information; 14; 9; 9-2023; 1-22  
dc.identifier.issn
2078-2489  
dc.identifier.uri
http://hdl.handle.net/11336/231426  
dc.description.abstract
The knowledge provided by user communities in question-answering (QA) forums is a highly valuable source of information for satisfying user information needs. However, finding the best answer for a posted question can be challenging. User-generated content in forums can be of unequal quality given the free nature of natural language and the varied levels of user expertise. Answers to a question posted in a forum are compiled in a discussion thread, concentrating also posterior activity such as comments and votes. There are usually multiple reasons why an answer successfully fulfills a certain information need and gets accepted as the best answer among a (possibly) high number of answers. In this work, we study the influence that different aspects of answers have on the prediction of the best answers in a QA forum. We collected the discussion threads of a real-world forum concerning computer programming, and we evaluated different features for representing the answers and the context in which they appear in a thread. Multiple classification models were used to compare the performance of the different features, finding that readability is one of the most important factors for detecting the best answers. The goal of this study is to shed some light on the reasons why answers are more likely to receive more votes and be selected as the best answer for a posted question. Such knowledge enables users to enhance their answers which leads, in turn, to an improvement in the overall quality of the content produced in a platform.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CQA forums  
dc.subject
best answer prediction  
dc.subject
information retrieval  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A study on influential features for predicting best answers in community question-answering forums  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-25T12:32:58Z  
dc.journal.volume
14  
dc.journal.number
9  
dc.journal.pagination
1-22  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Zoratto, Valeria. Universidad Nacional del Comahue. Facultad de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Aranda, Gabriela Noemi. Universidad Nacional del Comahue. Facultad de Informatica; Argentina  
dc.journal.title
Information  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/14/9/496  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/info14090496