Mostrar el registro sencillo del ítem
dc.contributor.author
Alonso, Diego Gabriel

dc.contributor.author
Monteserin, Ariel José

dc.contributor.author
Berdun, Luis Sebastian

dc.date.available
2024-03-25T12:55:27Z
dc.date.issued
2023-09
dc.identifier.citation
Alonso, Diego Gabriel; Monteserin, Ariel José; Berdun, Luis Sebastian; An interaction-aware approach for social influence maximization; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 21; 11; 9-2023; 1171-1180
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/231425
dc.description.abstract
Microblogging networks are considered a great source of social influence. One of its characteristics is their high dynamism. This fact produces that influential users continuously change according with time and topic. Several social networks metrics have been defined to rank influential users. However, these metrics fail to capture the dynamism of microblogging networks. For this reason, we propose an approach based on Credit Distribution model to identify the influential users of a microblogging social network by performing an online analysis of the users’ interactions. Moreover, we present a comparison of our approach with well-known metrics used for influencers ranking. The experiments were carried out in Twitter during sport events (football matches) and new product (video games) launchings. The results showed that our approach outperforms the metric-based rankings in terms of the influence spread. This confirms the importance of being updated for identifying influential users.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Social Influence Maximization
dc.subject
Social Network Modeling
dc.subject
Influencers Discovering
dc.subject
Viral Marketing
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
An interaction-aware approach for social influence maximization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-25T12:33:08Z
dc.journal.volume
21
dc.journal.number
11
dc.journal.pagination
1171-1180
dc.journal.pais
Estados Unidos

dc.journal.ciudad
New York
dc.description.fil
Fil: Alonso, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
IEEE Latin America Transactions

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/7022
Archivos asociados