Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection

Seeböck, Philipp; Orlando, José IgnacioIcon ; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; Bogunovic, Hrvoje
Fecha de publicación: 04/2024
Editorial: Elsevier Science
Revista: Medical Image Analysis
ISSN: 1361-8415
e-ISSN: 1361-8423
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models.
Palabras clave: deep learning , segmetnation , anomaly detection , semantic context
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.705Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/231279
URL: https://linkinghub.elsevier.com/retrieve/pii/S136184152400029X
DOI: http://dx.doi.org/10.1016/j.media.2024.103104
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Seeböck, Philipp; Orlando, José Ignacio; Michl, Martin; Mai, Julia; Schmidt Erfurth, Ursula; et al.; Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection; Elsevier Science; Medical Image Analysis; 93; 4-2024; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES