Mostrar el registro sencillo del ítem

dc.contributor.author
Han, Shuning  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Zhao, Kanhao  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhang, Yu  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2024-03-21T14:44:38Z  
dc.date.issued
2024-01  
dc.identifier.citation
Han, Shuning; Sun, Zhe; Zhao, Kanhao; Duan, Feng; Caiafa, César Federico; et al.; Early prediction of dementia using fMRI data with a graph convolutional network approach; IOP Publishing; Journal of Neural Engineering; 1-2024  
dc.identifier.issn
1741-2560  
dc.identifier.uri
http://hdl.handle.net/11336/231185  
dc.description.abstract
Objective: Alzheimer´s disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs). Approach: Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset.We developed the GCN model for two different purposes: 1) MCI diagnosis: classifying MCI from normal controls; and 2) dementia risk prediction: classifying normal controls from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results: The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance: Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implemention is available at: https://github.com/Shuning-Han/FC-based-GCN.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
fMRI  
dc.subject
dementia  
dc.subject
neural networks  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Early prediction of dementia using fMRI data with a graph convolutional network approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-15T14:44:37Z  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Han, Shuning. Universitat de Vic; España  
dc.description.fil
Fil: Sun, Zhe. Lab. Adaptive Intelligence. Riken; Japón  
dc.description.fil
Fil: Zhao, Kanhao. Lab. Adaptive Intelligence. Riken; Japón  
dc.description.fil
Fil: Duan, Feng. College Of Artificial Intelligence - Nankai University; China  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos  
dc.description.fil
Fil: Solé Casals, Jordi. Universitat de Vic; España  
dc.journal.title
Journal of Neural Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/ad1e22  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/ad1e22