Mostrar el registro sencillo del ítem
dc.contributor.author
Sofonea, Mircea
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2024-03-21T13:44:02Z
dc.date.issued
2024-01
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18
dc.identifier.issn
2075-1680
dc.identifier.uri
http://hdl.handle.net/11336/231163
dc.description.abstract
Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
STATIONARY INCLUSION
dc.subject
CONVERGENCE CRITERION
dc.subject
PENALTY METHOD
dc.subject
FRICTIONAL CONTACT PROBLEM
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-19T14:06:39Z
dc.journal.volume
13
dc.journal.number
1
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Sofonea, Mircea. University of Perpignan; Francia
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Axioms
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/axioms13010052
Archivos asociados