Mostrar el registro sencillo del ítem

dc.contributor.author
Sofonea, Mircea  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2024-03-21T13:44:02Z  
dc.date.issued
2024-01  
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18  
dc.identifier.issn
2075-1680  
dc.identifier.uri
http://hdl.handle.net/11336/231163  
dc.description.abstract
Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
STATIONARY INCLUSION  
dc.subject
CONVERGENCE CRITERION  
dc.subject
PENALTY METHOD  
dc.subject
FRICTIONAL CONTACT PROBLEM  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-19T14:06:39Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sofonea, Mircea. University of Perpignan; Francia  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Axioms  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/axioms13010052