Artículo
Magnetic fields on non-singular 2-step nilpotent Lie groups
Fecha de publicación:
06/2024
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This work has a twofold purpose - the existence study of closed 2-forms, known as magnetic fields, on 2-step nilpotent Lie groups and generating examples for the non-singular family. At the Lie algebra level, while the existence of closed 2-forms for which the center is either nondegenerate or in the kernel of the 2-form, is always guaranteed, the existence of closed 2-forms for which the center is isotropic but not in the kernel of the 2-form, is a special situation. These 2-forms are called of type II. We obtain a strong obstruction for the existence on non-singular Lie algebras. Moreover, we prove that the only H-type Lie groups admitting left-invariant closed 2-forms of type II are the real, complex and quaternionic Heisenberg Lie groups of dimension three, six and seven, respectively. We also prove the non-existence of uniform magnetic fields under certain hypotheses. Finally we give a construction of non-singular Lie algebras, proving that in some families of these examples there are no closed 2-form of type II.
Palabras clave:
2-STEP NILMANIFOLDS
,
CLOSED 2-FORMS
,
H-TYPE LIE GROUPS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Ovando, Gabriela Paola; Subils, Mauro; Magnetic fields on non-singular 2-step nilpotent Lie groups; Elsevier Science; Journal Of Pure And Applied Algebra; 228; 6; 6-2024; 11-26
Compartir
Altmétricas