Mostrar el registro sencillo del ítem

dc.contributor.author
Diez, Pablo Federico  
dc.contributor.author
Orosco, Lorena Liliana  
dc.contributor.author
Garces Correa, Maria Agustina  
dc.contributor.author
Carmona Viglianco, Victor Luciano  
dc.date.available
2024-03-19T12:33:55Z  
dc.date.issued
2024-01  
dc.identifier.citation
Diez, Pablo Federico; Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Carmona Viglianco, Victor Luciano; Assessment of visual fatigue in SSVEP-based brain-computer interface: a comprehensive study; Springer Heidelberg; Medical And Biological Engineering And Computing; 1-2024; 1-16  
dc.identifier.issn
0140-0118  
dc.identifier.uri
http://hdl.handle.net/11336/230894  
dc.description.abstract
Fatigue deteriorates the performance of a brain-computer interface (BCI) system; thus, reliable detection of fatigue is the first step to counter this problem. The fatigue evaluated by means of electroencephalographic (EEG) signals has been studied in many research projects, but widely different results have been reported. Moreover, there is scant research when considering the fatigue on steady-state visually evoked potential (SSVEP)-based BCI. Therefore, nowadays, fatigue detection is not a completely solved topic. In the current work, the issues found in the literature that led to the differences in the results are identified and saved by performing a new experiment on an SSVEP-based BCI system. The experiment was long enough to produce fatigue in the users, and different SSVEP stimulation ranges were used. Additionally, the EEG features commonly reported in the literature (EEG rhythms powers, SNR, etc.) were calculated as well as newly proposed features (spectral features and Lempel–Ziv complexity). The analysis was carried out on O1, Oz and O2 channels. This work found a tendency of displacement from high-frequency rhythms to low-frequency ones, and thus, better EEG features should present a similar behaviour. Then, the ‘relative power’ of EEG rhythms, the rates (θ + α)/β, α/β and θ/β, some spectral features (central and mean frequencies, asymmetry and kurtosis coefficients, etc.) and Lempel–Ziv complexity are proposed as reliable EEG features for fatigue detection. Hence, this set of features may be used to construct a more trustworthy fatigue index.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BCI  
dc.subject
EEG  
dc.subject
FATIGUE  
dc.subject
SSVEP  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Assessment of visual fatigue in SSVEP-based brain-computer interface: a comprehensive study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-19T10:28:33Z  
dc.journal.pagination
1-16  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Garces Correa, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan; Argentina  
dc.description.fil
Fil: Carmona Viglianco, Victor Luciano. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.journal.title
Medical And Biological Engineering And Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-023-03000-z