Mostrar el registro sencillo del ítem
dc.contributor.author
Diez, Pablo Federico
dc.contributor.author
Orosco, Lorena Liliana
dc.contributor.author
Garces Correa, Maria Agustina
dc.contributor.author
Carmona Viglianco, Victor Luciano
dc.date.available
2024-03-19T12:33:55Z
dc.date.issued
2024-01
dc.identifier.citation
Diez, Pablo Federico; Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Carmona Viglianco, Victor Luciano; Assessment of visual fatigue in SSVEP-based brain-computer interface: a comprehensive study; Springer Heidelberg; Medical And Biological Engineering And Computing; 1-2024; 1-16
dc.identifier.issn
0140-0118
dc.identifier.uri
http://hdl.handle.net/11336/230894
dc.description.abstract
Fatigue deteriorates the performance of a brain-computer interface (BCI) system; thus, reliable detection of fatigue is the first step to counter this problem. The fatigue evaluated by means of electroencephalographic (EEG) signals has been studied in many research projects, but widely different results have been reported. Moreover, there is scant research when considering the fatigue on steady-state visually evoked potential (SSVEP)-based BCI. Therefore, nowadays, fatigue detection is not a completely solved topic. In the current work, the issues found in the literature that led to the differences in the results are identified and saved by performing a new experiment on an SSVEP-based BCI system. The experiment was long enough to produce fatigue in the users, and different SSVEP stimulation ranges were used. Additionally, the EEG features commonly reported in the literature (EEG rhythms powers, SNR, etc.) were calculated as well as newly proposed features (spectral features and Lempel–Ziv complexity). The analysis was carried out on O1, Oz and O2 channels. This work found a tendency of displacement from high-frequency rhythms to low-frequency ones, and thus, better EEG features should present a similar behaviour. Then, the ‘relative power’ of EEG rhythms, the rates (θ + α)/β, α/β and θ/β, some spectral features (central and mean frequencies, asymmetry and kurtosis coefficients, etc.) and Lempel–Ziv complexity are proposed as reliable EEG features for fatigue detection. Hence, this set of features may be used to construct a more trustworthy fatigue index.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BCI
dc.subject
EEG
dc.subject
FATIGUE
dc.subject
SSVEP
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Assessment of visual fatigue in SSVEP-based brain-computer interface: a comprehensive study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-19T10:28:33Z
dc.journal.pagination
1-16
dc.journal.pais
Alemania
dc.description.fil
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.description.fil
Fil: Garces Correa, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan; Argentina
dc.description.fil
Fil: Carmona Viglianco, Victor Luciano. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.journal.title
Medical And Biological Engineering And Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-023-03000-z
Archivos asociados