Mostrar el registro sencillo del ítem
dc.contributor.author
Boyallian, Carina
dc.contributor.author
Liberati, Jose Ignacio
dc.date.available
2024-03-19T12:26:28Z
dc.date.issued
2004-12
dc.identifier.citation
Boyallian, Carina; Liberati, Jose Ignacio; On irreducible infinite conformal algebras; Universidade de São Paulo; Resenhas Do Instituto de Matematica E Estatistica Da Universidade de Sao Paulo; 6; 12-2004; 129-140
dc.identifier.issn
0104-3854
dc.identifier.uri
http://hdl.handle.net/11336/230890
dc.description.abstract
The associative conformal algebra CendN and the corresponding general Lie conformal algebra gcN are the most important examples of simple conformal algebras which are not finite (see Sect. 2.10 in [K1]). One of the most important open problems of the theory of conformal algebras is the classification of infinite subalgebras of CendN and of gcN which act irreducibly on C[∂] N . (For a classification of such finite algebras, in the associative case see Theorem 2.6 of the present paper, and in the (more difficult) Lie case see [CK] and [DK].) The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C that acts irreducibly on C N is the whole algebra MatN C. This is certainly not true for subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family of infinite subalgebras CendN,P of CendN , where P(x) ∈ MatN C[x], det P(x) 6= 0, that still act irreducibly on C[∂] N . One of the conjectures of [K2] states that there are no other infinite irreducible subalgebras of CendN . This conjecture was recently proved by Kolesnikov [Ko]. In the Lie conformal case, we have a conjecture on the classification of infinite Lie conformal subalgebras of gcN acting irreducibly on C[∂] N , see Conjecture 4.4. This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V. Kac.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Universidade de São Paulo
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ALGEBRAS
dc.subject
IRREDUCIBLE INFINITE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On irreducible infinite conformal algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-18T10:53:03Z
dc.journal.volume
6
dc.journal.pagination
129-140
dc.journal.pais
Brasil
dc.description.fil
Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Resenhas Do Instituto de Matematica E Estatistica Da Universidade de Sao Paulo
Archivos asociados