Artículo
Graphical Representation of Multidimensional Poverty: Insights for Index Construction and Policy Making
Fecha de publicación:
03/2024
Editorial:
Springer
Revista:
Social Indicators Research
ISSN:
0303-8300
e-ISSN:
1573-0921
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
By means of probabilistic graphical models, in this paper, we present a new framework for exploring relationships among indicators commonly included in the Multidimensional Poverty Index (MPI). In particular, we propose an Ising model with covariates for modeling the MPI as an undirected graph. First, we prove why Ising models are consistent with the theoretical distribution of MPI indicators. Then, a comparison between our estimates and the association measures typically used in the literature is provided. Finally, we show how undirected graphs can complement the MPI policy-relevant properties, apart from discovering further insightful patterns that can be useful for policy purposes. This novel approach is illustrated with an empirical application for the global MPI indicators of Guinea and Ecuador, taking living areas and monetary poverty as covariates, respectively.
Palabras clave:
MPI
,
Markov Random Fields
,
Ising Models
,
Conditional Dependency
,
Deptrivations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
García Arancibia, Rodrigo; Girela, Ignacio Germán; Graphical Representation of Multidimensional Poverty: Insights for Index Construction and Policy Making; Springer; Social Indicators Research; 3-2024; 1-40
Compartir
Altmétricas