Artículo
Matrix-valued bispectral operators and quasideterminants
Fecha de publicación:
12/2008
Editorial:
IOP Publishing
Revista:
Journal of Physics A: Mathematical and Theoretical
ISSN:
1751-8113
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a matrix-valued version of the bispectral problem, that is, find differential operators and with matrix coefficients such that there exists a family of matrix-valued common eigenfunctions ψ(x, z): where f and Θ are matrix-valued functions. Using quasideterminants, we prove that the operators L obtained by non-degenerated rational matrix Darboux transformations from are bispectral operators, where and D is a diagonal matrix. We also give a procedure to find an explicit formula for the operator B extending previous results in the scalar case.
Palabras clave:
QUASIDETERMINATS
,
BIESPECTRAL OPERATORS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Boyallian, Carina; Liberati, Jose Ignacio; Matrix-valued bispectral operators and quasideterminants; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 41; 36; 12-2008; 1-11
Compartir
Altmétricas