Mostrar el registro sencillo del ítem

dc.contributor.author
Garcia, José Ignacio  
dc.contributor.author
Liberati, Jose Ignacio  
dc.date.available
2024-03-18T12:41:16Z  
dc.date.issued
2012-07  
dc.identifier.citation
Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞,p; American Institute of Physics; Journal of Mathematical Physics; 54; 7; 7-2012; 1-25  
dc.identifier.issn
1111-1119  
dc.identifier.uri
http://hdl.handle.net/11336/230792  
dc.description.abstract
We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Algebra  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quasifinite representations of classical Lie subalgebras of W∞,p  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-18T10:52:52Z  
dc.journal.volume
54  
dc.journal.number
7  
dc.journal.pagination
1-25  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Journal of Mathematical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.1151  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/1.4812556