Mostrar el registro sencillo del ítem
dc.contributor.author
Garcia, José Ignacio
dc.contributor.author
Liberati, Jose Ignacio
dc.date.available
2024-03-18T12:41:16Z
dc.date.issued
2012-07
dc.identifier.citation
Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞,p; American Institute of Physics; Journal of Mathematical Physics; 54; 7; 7-2012; 1-25
dc.identifier.issn
1111-1119
dc.identifier.uri
http://hdl.handle.net/11336/230792
dc.description.abstract
We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Algebra
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quasifinite representations of classical Lie subalgebras of W∞,p
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-18T10:52:52Z
dc.journal.volume
54
dc.journal.number
7
dc.journal.pagination
1-25
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Journal of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.1151
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/1.4812556
Archivos asociados