Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Landscape genetics outperforms habitat suitability in predicting landscape resistance for congeneric cat species

Charão Sartor, Caroline; Wan, Ho Yi; Pereira, Javier AdolfoIcon ; Eizirik, Eduardo; Campos Trigo, Tatiane; de Freitas, Thales Renato O.; Cushman, Samuel Alan
Fecha de publicación: 12/2022
Editorial: Wiley Blackwell Publishing, Inc
Revista: Journal of Biogeography
ISSN: 0305-0270
e-ISSN: 1365-2699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

Aim: The use of landscape resistance maps to model connectivity has become an indispensable tool for species conservation. However, different methods can be used to estimate landscape resistance, but there is no consensus on which is the most reliable one. Therefore, comparing the performance of those methods in predicting resistance can be quite useful to understand their limitations and conservation implications. Our goal was to evaluate the accuracy of two commonly used approaches, habitat suitability modelling and landscape genetics, in estimating landscape resistance to genetic connectivity of two species of Neotropical cats (Leopardus guttulus and L. geoffroyi) across their ranges. Location: South America. Taxon: Felidae—L. guttulus and L. geoffroyi. Methods: For both species, we optimized a landscape genetics resistance surface using a restricted multivariate optimization approach and transformed a habitat suitability map into a resistance layer. We compared landscape resistance models created by these two approaches based on the models´ Akaike information criterion scores and evaluated the similarities and differences in their predictions by calculating the correlation between the resistance layers and generating difference maps. Results: The genetic approach greatly outperformed the habitat suitability approach in explaining movement driving gene flow for both species. For the studied species, habitat preference and genetic connectivity are influenced by different landscape features. Habitat alteration imposes great resistance for genetic connectivity, and the presence of natural vegetation remnants within altered environments is essential for their conservation. Main conclusions: For the studied species, the transformation of habitat suitability models into resistance surfaces is a poor proxy for permeability to dispersal, and the use of genetic data is more reliable in modelling connectivity for species conservation. Habitat suitability and landscape resistance are not equivalent or even proportional for these species.
Palabras clave: CARNIVORES , CONNECTIVITY , LEOPARDUS GEOFFROYI , LEOPARDUS GUTTULUS , MICROSATELLITE , MULTISPECIES
Ver el registro completo
 
Archivos asociados
Tamaño: 3.326Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/230461
DOI: http://dx.doi.org/10.1111/jbi.14498
Colecciones
Articulos(MACNBR)
Articulos de MUSEO ARG.DE CS.NAT "BERNARDINO RIVADAVIA"
Citación
Charão Sartor, Caroline; Wan, Ho Yi; Pereira, Javier Adolfo; Eizirik, Eduardo; Campos Trigo, Tatiane; et al.; Landscape genetics outperforms habitat suitability in predicting landscape resistance for congeneric cat species; Wiley Blackwell Publishing, Inc; Journal of Biogeography; 49; 12; 12-2022; 2206-2217
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES