Mostrar el registro sencillo del ítem

dc.contributor.author
Hojamberdiev, Mirabbos  
dc.contributor.author
Vargas Balda, Ronald Eduardo  
dc.contributor.author
Madriz Ruiz, Lorean Mercedes  
dc.contributor.author
Yubuta, Kunio  
dc.contributor.author
Kadirova, Zukhra C.  
dc.contributor.author
Shaislamov, Ulugbek  
dc.contributor.author
Sannegowda, Lokesh Koodlur  
dc.contributor.author
Jędruchniewicz, Katarzyna  
dc.contributor.author
Typek, Rafał  
dc.contributor.author
Teshima, Katsuya  
dc.contributor.author
Czech, Bożena  
dc.date.available
2024-03-12T14:07:57Z  
dc.date.issued
2023-12  
dc.identifier.citation
Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Yubuta, Kunio; Kadirova, Zukhra C.; et al.; Unveiling the origin of the efficient photocatalytic degradation of nitazoxanide over bismuth (oxy)iodide crystalline phases; Royal Society of Chemistry; Environmental Science: Nano; 11; 1; 12-2023; 336-350  
dc.identifier.issn
2051-8153  
dc.identifier.uri
http://hdl.handle.net/11336/230217  
dc.description.abstract
Conventional wastewater treatment has been found to be ineffective at fully removing various antiviral drugs and emerging pollutants from wastewater. As an advanced oxidation process, heterogeneous photocatalysis is promising for detoxifying such water pollutants due to its mild operating conditions and efficiency. In this study, we explore the oxidative phase transition from bismuth iodide to bismuth oxyiodides by altering the temperature and time of thermal treatment. The influence of the temperature change from 350 °C to 450 °C on the phase transition from bismuth iodide to bismuth oxyiodides is more pronounced compared with the impact of time. This results in the formation of different bismuth oxyiodide crystalline phases with varying optoelectronic properties and photocatalytic activity. The effect of the bismuth iodide-to-bismuth oxyiodide phase transition on the efficiency of the photocatalytic removal of nitazoxanide is investigated in this study. The significant role of the BiOI/Bi4O5I2 heterostructure is established in facilitating the rapid photocatalytic degradation of nitazoxanide, with respective rate constants of k1 (0.051 min−1) and k2 (4.225 mg g−1 min−1) obtained for the photocatalyst sample thermally treated at 375 °C for 1 h. Trapping experiments provide evidence that photoexcited holes and hydroxyl radicals play a crucial role in the photocatalytic degradation of nitazoxanide. The photodegradation of nitazoxanide in aqueous solution over crystalline bismuth (oxy)iodide proceeds via hydrolysis into acetylsalicylic acid and the respective aminonitrothiazol, followed by the deacetylation and decarboxylation processes. Molecular dynamics simulation confirms that the high photocatalytic activity of BiOI/Bi4O5I2 is correlated to the higher adsorption energy due to the formation of a network of close contacts (<3.5 Å) between nitazoxanide molecules and iodine atoms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Nitazoxanide  
dc.subject
Bismuth (oxy) iodide  
dc.subject
Photocatalysis  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unveiling the origin of the efficient photocatalytic degradation of nitazoxanide over bismuth (oxy)iodide crystalline phases  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-11T11:42:17Z  
dc.identifier.eissn
2051-8161  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
336-350  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania  
dc.description.fil
Fil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Madriz Ruiz, Lorean Mercedes. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Yubuta, Kunio. Kyushu University; Japón  
dc.description.fil
Fil: Kadirova, Zukhra C.. National University of Uzbekistan; Uzbekistán. Tashkent State Technical University; Uzbekistán  
dc.description.fil
Fil: Shaislamov, Ulugbek. National University Of Uzbekistan; Uzbekistán  
dc.description.fil
Fil: Sannegowda, Lokesh Koodlur. Vijayanagara Sri Krishnadevaraya University; India  
dc.description.fil
Fil: Jędruchniewicz, Katarzyna. Maria Curie-Skłodowska University in Lublin; Polonia  
dc.description.fil
Fil: Typek, Rafał. Maria Curie-Skłodowska University in Lublin; Polonia  
dc.description.fil
Fil: Teshima, Katsuya. Shinshu University; Japón  
dc.description.fil
Fil: Czech, Bożena. Maria Curie-Skłodowska University in Lublin; Polonia  
dc.journal.title
Environmental Science: Nano  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d3en00548h  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2024/en/d3en00548h