Mostrar el registro sencillo del ítem
dc.contributor.author
Serafini, María Cecilia
dc.contributor.author
Rosales, Nicolás
dc.contributor.author
Garelli, Fabricio
dc.date.available
2024-03-08T12:34:50Z
dc.date.issued
2023-08
dc.identifier.citation
Serafini, María Cecilia; Rosales, Nicolás; Garelli, Fabricio; Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization; Taylor & Francis Ltd; Computer Methods In Biomechanics And Biomedical Engineering; 8-2023; 1-12
dc.identifier.issn
1025-5842
dc.identifier.uri
http://hdl.handle.net/11336/229817
dc.description.abstract
Several closed or hybrid loop controllers for Blood Glucose (BG) regulation, which are also known as Artificial Pancreas (AP) Systems or Automated Insulin Delivery systems (AIDs), are in development worldwide. Most AIDs are designed and evaluated for short-term performance, with a particular emphasis on the post-meal period. However, if controllers are not adapted properly to account for variations in physiology that affect Insulin Sensitivity (IS), the AIDs may perform inadequately. In this work, the performance of two Reinforcement Learning (RL) agents trained under both piecewise and continuous reward functions is evaluated in-silico for long-term adaptation of a Fully Automated Insulin Delivery (fAID) system. An automatic adaptive discretization scheme that expands the state space as needed is also implemented to avoid disproportionate state space exploration. The proposed agents are evaluated for long-term adaptation of the Automatic Regulation of Glucose (ARG) algorithm, considering variations in IS. Results show that both RL agents have improved performance compared to a rule-based decision-making approach and the baseline controller for the majority of the adult population. Moreover, the use of a continuous shaped reward function proves to enhance the performance of the agents further than a piecewise one.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
diabetes mellitus
dc.subject
adaptive system
dc.subject
closed-loop
dc.subject
controller adaptation
dc.subject
reinforcement learning
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-15T11:45:13Z
dc.journal.pagination
1-12
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Serafini, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
dc.description.fil
Fil: Rosales, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
dc.description.fil
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
dc.journal.title
Computer Methods In Biomechanics And Biomedical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10255842.2023.2241945
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10255842.2023.2241945
Archivos asociados