Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Real-Time predictive management of a multi-unit HVAC system based on heuristic optimization: A health center case study

Schierloh, R.M.; Bragagnolo, Sergio NicolásIcon ; Vega, Jorge RubenIcon ; Vaschetti, Jorge Carlos
Fecha de publicación: 09/2023
Editorial: Elsevier Science SA
Revista: Energy and Buildings
ISSN: 0378-7788
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

Heating, ventilation, and air conditioning (HVAC) systems have a high energy consumption, so their control and management strategies have an important role today to improve the efficiency and reduce cost of power systems. This work proposes an optimal real-time management scheme for multi-units HVAC systems based on a predictive control that seeks to maximize thermal comfort while minimizing electric energy cost, applicable to multi-zone buildings and useful for low-cost implementations. The optimization problem is formulated to be solved with a heuristic approach using simple variable prediction models of outdoor temperature, room occupancy and load demand, developed using level reconciliation with average profiles. The scheme is applied to the study case of a radiotherapy and medical imaging center HVAC system, in Argentina. The performance of the strategy is evaluated using variable prediction models (real forecasting), perfect prediction (ideal forecasting), and different prediction horizons (of 1, 2 and 3 h) for the predictive controller. Additionally, the strategy is compared against an improved on–off control by temperature bands with and without peak clipping, showing that the proposed strategy improves the thermal comfort (up to 47 %) and achieves a low electrical cost, particularly compared to the strategy without peak clipping (23 % decrease).
Palabras clave: DEMAND RESPONSE , GENETIC ALGORITHM , HVAC MANAGEMENT , MODEL PREDICTIVE CONTROL , REAL-TIME OPTIMIZATION , THERMAL MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 2.877Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/229638
DOI: http://dx.doi.org/10.1016/j.enbuild.2023.113315
URL: https://www.sciencedirect.com/science/article/pii/S0378778823005455
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Schierloh, R.M.; Bragagnolo, Sergio Nicolás; Vega, Jorge Ruben; Vaschetti, Jorge Carlos; Real-Time predictive management of a multi-unit HVAC system based on heuristic optimization: A health center case study; Elsevier Science SA; Energy and Buildings; 295; 113315; 9-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES