Mostrar el registro sencillo del ítem
dc.contributor.author
Hao, Yue
dc.contributor.author
Clark Di Leoni, Patricio
dc.contributor.author
Marxen, Olaf
dc.contributor.author
Meneveau, Charles
dc.contributor.author
Karniadakis, George Em
dc.contributor.author
Zaki, Tamer A.
dc.date.available
2024-03-04T15:04:06Z
dc.date.issued
2023-11
dc.identifier.citation
Hao, Yue; Clark Di Leoni, Patricio; Marxen, Olaf; Meneveau, Charles; Karniadakis, George Em; et al.; Instability-wave prediction in hypersonic boundary layers with physics-informed neural operators; Elsevier; Journal of Computational Science; 73; 11-2023; 1-19
dc.identifier.issn
1877-7503
dc.identifier.uri
http://hdl.handle.net/11336/229229
dc.description.abstract
Fast and accurate prediction of the nonlinear evolution of instability waves in high-speed boundary layers requires specialized numerical algorithms, and augmenting limited observation in this extreme flow regime is challenging. The deep operator networks (DeepONet) has been shown to be an effective tool for providing accurate and fast physics-informed predictions. DeepONet is trained to map an incoming perturbation to the associated downstream flow field within the nonlinear flow regime. The training is performed using high-fidelity data from direct numerical simulations of the compressible Navier–Stokes equations, when the gas can be approximated as calorically perfect and when chemical non-equilibrium effects must be computed. The performance and requirements of training the DeepONet in each case are evaluated. In addition, we show that informing the training of the DeepONet with the continuity equation improves the accuracy of the results, especially in absence of sufficient training data. Success of the physics-informed DeepONet to predict missing fields depends on the observables. Specifically, prediction of a unique solution depends on the available measurements. These results are a promising step towards applications of neural operator networks to more complex high-speed flow configurations and to data assimilation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP OPERATOR NEURAL NETWORKS
dc.subject
HIGH-SPEED BOUNDARY LAYERS
dc.subject
HYPERSONICS
dc.subject
NON-EQUILIBRIUM CHEMICAL REACTION
dc.subject
REAL CHEMISTRY
dc.subject.classification
Física de los Fluidos y Plasma
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Instability-wave prediction in hypersonic boundary layers with physics-informed neural operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-04T12:24:05Z
dc.journal.volume
73
dc.journal.pagination
1-19
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Hao, Yue. University Johns Hopkins; Estados Unidos. Johns Hopkins University; Estados Unidos
dc.description.fil
Fil: Clark Di Leoni, Patricio. Universidad de San Andrés; Argentina. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Marxen, Olaf. University of Surrey; Reino Unido
dc.description.fil
Fil: Meneveau, Charles. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Karniadakis, George Em. University Brown; Estados Unidos
dc.description.fil
Fil: Zaki, Tamer A.. University Johns Hopkins; Estados Unidos
dc.journal.title
Journal of Computational Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jocs.2023.102120
Archivos asociados