Mostrar el registro sencillo del ítem

dc.contributor.author
de Mello Capetti, Caio Cesar  
dc.contributor.author
de Oliveira Arnoldi Pellegrini, Vanessa  
dc.contributor.author
Moreira Vacilotto, Milena  
dc.contributor.author
Aprigio da Silva Curvelo, Antonio  
dc.contributor.author
Falvo, Maurício  
dc.contributor.author
Gontijo Guimaraes, Francisco Eduardo  
dc.contributor.author
Ontañon, Ornella Mailén  
dc.contributor.author
Campos, Eleonora  
dc.contributor.author
Polikarpov, Igor  
dc.date.available
2024-03-01T17:59:05Z  
dc.date.issued
2023-10  
dc.identifier.citation
de Mello Capetti, Caio Cesar; de Oliveira Arnoldi Pellegrini, Vanessa; Moreira Vacilotto, Milena; Aprigio da Silva Curvelo, Antonio; Falvo, Maurício; et al.; Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes; Springer; Food and Bioprocess Technology; 10-2023; 1-13  
dc.identifier.issn
1935-5130  
dc.identifier.uri
http://hdl.handle.net/11336/229139  
dc.description.abstract
Xylan is the most abundant constituent of hemicellulose fraction of lignocellulosic biomass. Short xylooligosaccharides (XOS), obtained via xylan hydrolysis, have well-known prebiotic and antioxidant properties that are beneficial for human and animal health. In this study, two alternative pretreatment strategies (alkali and hydrothermal) and three different enzymes were applied for enzymatic XOS production from sugarcane bagasse. The enzymatic hydrolysis was performed with nine different combinations of recombinant endo-xylanases from GH11 and GH10 families and GH11 xylobiohydrolase. Hydrothermal pretreatment followed by optimized enzymatic hydrolysis yielded up to 96 ± 1 mg of XOS per gram of initial biomass, whereas enzymatic hydrolysis of alkali-pretreated sugarcane bagasse rendered around 47.6 ± 0.2 mg/g. For both alkali and hydrothermal routes, the maximum yields of short-length XOS were obtained using the GH10 xylanase alone. Furthermore, differences in XOS profiles obtained by controlled mixtures of the enzymes have been evaluated. For both routes, the best yields of short-length XOS were obtained using the GH10 xylanase alone, which is consistent with the notion that sugarcane xylan substitutions partially hinder GH11 xylanase activity. The results presented here show that a green and cost-effective hydrothermal pretreatment path for xylooligosaccharides production, rendered considerably better XOS yields.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALKALI PRETREATMENT  
dc.subject
HYDROTHERMAL PRETREATMENT  
dc.subject
SUGARCANE BAGASSE  
dc.subject
XYLANASES  
dc.subject
XYLOOLIGOSACCHARIDES  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Evaluation of Hydrothermal and Alkaline Pretreatment Routes for Xylooligosaccharides Production from Sugar Cane Bagasse Using Different Combinations of Recombinant Enzymes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-28T09:49:31Z  
dc.journal.pagination
1-13  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: de Mello Capetti, Caio Cesar. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.description.fil
Fil: de Oliveira Arnoldi Pellegrini, Vanessa. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.description.fil
Fil: Moreira Vacilotto, Milena. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.description.fil
Fil: Aprigio da Silva Curvelo, Antonio. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Falvo, Maurício. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.description.fil
Fil: Gontijo Guimaraes, Francisco Eduardo. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.description.fil
Fil: Ontañon, Ornella Mailén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.description.fil
Fil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Polikarpov, Igor. Universidade do Sao Paulo. Instituto de Fisica de Sao Carlos; Brasil  
dc.journal.title
Food and Bioprocess Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11947-023-03226-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11947-023-03226-7