Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Gene-environment interactions and preterm birth predictors: A Bayesian network approach

Elias, Dario EzequielIcon ; Santos, María RitaIcon ; Campaña, Hebe; Poletta, Fernando AdriánIcon ; Heisecke Peralta, Silvina LidiaIcon ; Gili, Juan AntonioIcon ; Ratowiecki, JuliaIcon ; Cosentino, Viviana Raquel; Uranga, Rocio; Rojas Málaga, Diana; Brinckmann Oliveira Netto, Alice; Brusius Facchin, Ana Carolina; Saleme, César; Rittler, Monica; Krupitzki, Hugo BernardoIcon ; López Camelo, Jorge SantiagoIcon ; Gimenez, Lucas GabrielIcon
Fecha de publicación: 12/2023
Editorial: Sociedade Brasileira de Genética
Revista: Genetics and Molecular Biology
ISSN: 1415-4757
e-ISSN: 1678-4685
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Epidemiología

Resumen

Preterm birth (PTB) is the main condition related to perinatal morbimortality worldwide. The aim of this study was to identify gene-environment interactions associated with spontaneous PTB or its predictors. We carried out a retrospective case–control study including parental sociodemographic and obstetric data as well as newborn genetic variants of 69 preterm and 61 at term newborns born at a maternity hospital from Tucumán, Argentina, between 2005 and 2010. A data-driven Bayesian network including the main PTB predictors was created where we identified gene-environment interactions. We used logistic regressions to calculate the odds ratios and confidence intervals of the interactions. From the main PTB predictors (nine exposures and six genetic variants) we identified an interaction between low neighbourhood socioeconomic status and rs2074351 (PON1, genotype GG) variant that was associated with an increased risk of toxoplasmosis (odds ratio 12.51, confidence interval 95%: 1.71 – 91.36). The results of this exploratory study suggest that structural social disparities could influence the PTB risk by increasing the frequency of exposures that potentiate the risk associated with individual characteristics such as genetic traits. Future studies with larger sample sizes are necessary to confirm these findings.
Palabras clave: BAYESIAN APPROACH , GENE-ENVIRONMENT INTERACTION , NEIGHBOURHOOD CHARACTERISTICS , PRETERM BIRTH , TOXOPLASMOSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 443.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228932
URL: https://www.scielo.br/j/gmb/a/Wg58n9Lk5xdbdfLm3KXB4Fk/?lang=en
DOI: https://doi.org/10.1590/1678-4685-GMB-2023-0090
Colecciones
Articulos(CEMIC-CONICET)
Articulos de CENTRO DE EDUCACION MEDICA E INVESTIGACIONES CLINICAS "NORBERTO QUIRNO"
Articulos(IMBICE)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA CELULAR (I)
Citación
Elias, Dario Ezequiel; Santos, María Rita; Campaña, Hebe; Poletta, Fernando Adrián; Heisecke Peralta, Silvina Lidia; et al.; Gene-environment interactions and preterm birth predictors: A Bayesian network approach; Sociedade Brasileira de Genética; Genetics and Molecular Biology; 46; 4; 12-2023; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES