Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A genetic operators-based Ant Lion Optimiser for training a medical multi-layer perceptron

Rojas, Matias Gabriel; Olivera, Ana CarolinaIcon ; Vidal, Pablo JavierIcon
Fecha de publicación: 12/2023
Editorial: Elsevier Science
Revista: Applied Soft Computing
ISSN: 1568-4946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The immense amount of data managed during the diagnosis process overwhelms, by far, the clinicians’ processing capabilities. Artificial intelligence methods like Multi-Layer Perceptrons come to help by providing a second opinion based on powerful and reliable data processing. Unfortunately, these methods often suffer from problems related to their training methods, which can lead to poor performance. Metaheuristics are promising training alternatives because of their stochastic and general-purpose nature. This work introduces a new training method based on metaheuristics, called Genetic Ant Lion Optimiser. It includes new features for dealing with the convergence problems of the original Ant Lion Optimiser and integrates a novel crossover operator for avoiding stagnation. Experiments compare our proposal against 31 state-of-the-art algorithms, over 20 different medical datasets. Classification quality metrics reflect that our approach attains a robust and efficient behaviour with the majority of the datasets, obtaining highlighted results, such as an accuracy of 1.0 with the kidney dataset (bi-class) and 0.943 with the lung-cancer dataset (multi-class). Besides, it reaches adequate convergence rates and reasonable time consumption.
Palabras clave: GENETIC ANT LION OPTIMISER , MEDICAL DATA CLASSIFICATION , METAHEURISTICS , MULTI-LAYER PERCEPTRON , TRAINING METHODS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.517Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228809
URL: https://www.sciencedirect.com/science/article/pii/S1568494623012103
DOI: https://doi.org/10.1016/j.asoc.2023.111192
Colecciones
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Citación
Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; A genetic operators-based Ant Lion Optimiser for training a medical multi-layer perceptron; Elsevier Science; Applied Soft Computing; 151; 111192; 12-2023; 1-24
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES