Mostrar el registro sencillo del ítem

dc.contributor.author
Villarruel Dujovne, Matias  
dc.contributor.author
Bringas, Mauro  
dc.contributor.author
Felli, I. C.  
dc.contributor.author
Ravera, E.  
dc.contributor.author
Di Lella, Santiago  
dc.contributor.author
Capdevila, Daiana Andrea  
dc.date.available
2024-02-28T12:23:03Z  
dc.date.issued
2023-12  
dc.identifier.citation
Villarruel Dujovne, Matias; Bringas, Mauro; Felli, I. C.; Ravera, E.; Di Lella, Santiago; et al.; Introducing NMR strategies to define water molecules that drive metal binding in a transcriptional regulator; Elsevier; Journal of Magnetic Resonance Open; 16-17; 12-2023; 1-13  
dc.identifier.issn
2666-4410  
dc.identifier.uri
http://hdl.handle.net/11336/228746  
dc.description.abstract
Staphylococcus aureus CzrA is a paradigmatic member of the ArsR family of transcriptional metalloregulators, which are critical for the bacterial response to stress. Zinc binding to CzrA, which induces DNA derepression, is entropically driven, as shown by calorimetry. A detailed equilibrium dynamics study of different allosteric states of CzrA revealed that zinc induces an entropy redistribution that controls for DNA binding regulation; however, this change in conformational entropy only accounts for a small net contribution to the total entropy. This difference between the change in conformational entropy vs. total entropy of zinc binding implies a significant contribution of solvent molecule rearrangements to this equilibrium. However, the absence of major structural changes suggests that solvent rearrangements occur mainly on the protein surface and/or from zinc desolvation, concomitant with a dynamical redistribution of conformational entropy. Previous results also suggest that zinc binding not only leads to a redistribution of protein internal dynamics, but also release of water molecules from the protein surface. In turn, these water molecules may make a significant contribution to the allosteric response that results in dissociation from the DNA. Quantifying the differential hydration of two conformational states that share very similar crystal structures and then correlating this with the protein's solvent entropy change constitutes an unresolved problem, even when thermodynamics suggest a significant contribution of solvent entropy. Here, we present different avenues to dissect hydration dynamics in a metal-binding transcriptional regulator that provide different insights into this complex problem. We explore primary solution NMR tools for probing protein–water interactions: the laboratory frame nuclear Overhauser effect (NOE) and its rotating frame counterpart (ROE) between long-lived water molecules and the protein residues. The wNOE/wROE ratio is a promising tool for the detection of hydration dynamics near the surface of a protein in a site-specific manner, minimizing contamination from bulk solvent. Molecular dynamics simulations and computational methods designed to provide a spatially resolved picture of solvent thermodynamics were also employed to provide a more complete panorama of solvent redistribution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
METALLOPROTEINS  
dc.subject
SOLUTION NMR  
dc.subject
SOLVENT ENTROPY  
dc.subject
TRANSCRIPTIONAL REGULATORS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Introducing NMR strategies to define water molecules that drive metal binding in a transcriptional regulator  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-26T11:11:56Z  
dc.journal.volume
16-17  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Villarruel Dujovne, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Bringas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Felli, I. C.. Università degli Studi di Firenze; Italia  
dc.description.fil
Fil: Ravera, E.. Università degli Studi di Firenze; Italia. Consorzio Interuniversitario Risonanze Magnetiche Di Metalloproteine; Italia  
dc.description.fil
Fil: Di Lella, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Capdevila, Daiana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.journal.title
Journal of Magnetic Resonance Open  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666441023000225  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmro.2023.100114