Artículo
Temperature dependence of fast relaxation processes in amorphous materials
Fecha de publicación:
10/2023
Editorial:
American Physical Society
Revista:
Physical Review Materials
e-ISSN:
2475-9953
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We examine the structural relaxation of glassy materials at finite temperatures, considering the effect of activated rearrangements and long-range elastic interactions. Our three-dimensional mesoscopic relaxation model shows how the displacements induced by localized relaxation events can result in faster-than-exponential relaxation. Thermal activation allows for local rearrangements, which generate elastic responses and possibly cascades of new relaxation events. To study the interplay between these elastically dominated and thermally dominated dynamics, we introduce tracer particles that follow the displacement field induced by the local relaxation events, and we also incorporate Brownian motion. Our results reveal that the dynamic exponents and shape parameter of the dynamical structure factor depend on this competition and display a crossover from faster-than-exponential to exponential relaxation as temperature increases, consistent with recent observations in metallic glasses. Additionally, we find the distribution of waiting times between activations to be broadly distributed at low temperatures, providing a measure of dynamical heterogeneities characteristic of glassy dynamics.
Palabras clave:
AMORPHOUS MATERIALS
,
COMPRESSED EXPONENTIALS
,
RELAXATION
,
THERMAL ACTIVATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Rodriguez Lopez, Gieberth Wulliam; Martens, Kirsten; Ferrero, Eduardo Ezequiel; Temperature dependence of fast relaxation processes in amorphous materials; American Physical Society; Physical Review Materials; 7; 10; 10-2023; 1-19
Compartir
Altmétricas