Mostrar el registro sencillo del ítem
dc.contributor.author
Guerra Hernandez, Luis Alfonso
dc.contributor.author
Reynoso, Andres Alejandro
dc.contributor.author
Fainstein, Alejandro
dc.date.available
2024-02-27T11:46:02Z
dc.date.issued
2023-03
dc.identifier.citation
Guerra Hernandez, Luis Alfonso; Reynoso, Andres Alejandro; Fainstein, Alejandro; Does the chemical contribution have a secondary role in SERS?; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 40; 4; 3-2023; 78-85
dc.identifier.issn
0740-3224
dc.identifier.uri
http://hdl.handle.net/11336/228520
dc.description.abstract
It is an established understanding that the electromagnetic contribution (plasmon-mediated enhancement of a laser and scattered local electromagnetic fields) is the main actor in surface enhanced Raman scattering (SERS), with the so-called chemical (molecule-related) contribution assuming only, if any, a supporting role. The conclusion of our comprehensive experimental resonant study of a broad range of nanosphere lithography based metallic substrates, with covalently attached 4-mercaptobenzoic acid monolayers used as a probe (standard molecules that are non-resonant in solution), is that this accepted understanding needs to be revised. We present a detailed resonant SERS study of metal-film-over-nanosphere (MFON) substrates that is done by both scanning the laser wavelength and tuning the plasmon response through the nanosphere diameter, which is varied from 500 to 900 nm. Far and local field properties are characterized through measures of optical reflectivity and SERS efficiency, respectively, and are supported by numerical simulations. We demonstrate that SERS intensity depends indeed on the electromagnetic mechanism, determined by the plasmonic response of the system, but we observe that it is also strongly defined by a chemical resonant contribution related to a metal-to-ligand electronic transition of the covalently bound probe molecule. Optimum amplification occurs when the plasmon modes intersect with the ligand-to-metal chemical resonance, contributing synergically both mechanisms together. Quite notably, however, the largest SERS signal is observed when the laser is tuned with the metal-to-ligand transition, and typically does not follow the wavelength dependence of the plasmon modes when varying the nanosphere size. The same general trend is observed for other nanosphere lithography based substrates, including sphere segment void cavities and hexagonally ordered triangular nanoparticles, using either Ag or Au as the plasmonic metal, and also with a commercial substrate (Klarite). Interestingly, this extensive comparative investigation shows in addition that MFONsubstrates are significantly better than these other studied plasmonic substrates in terms ofRaman intensity and homogeneity. We conclude that a deep understanding of both electromagnetic and chemical mechanisms is necessary to fully exploit these substrates for analytical applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Optical Society of America
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SERS
dc.subject
SENSING
dc.subject
RAMAN SPECTROSCOPY
dc.subject
NANOSTRUCTURES
dc.subject.classification
Óptica
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Does the chemical contribution have a secondary role in SERS?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-26T16:05:15Z
dc.journal.volume
40
dc.journal.number
4
dc.journal.pagination
78-85
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Guerra Hernandez, Luis Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.description.fil
Fil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad de Sevilla; España
dc.description.fil
Fil: Fainstein, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.journal.title
Journal of the Optical Society of America B-Optical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/abstract.cfm?URI=josab-40-4-C78
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1364/JOSAB.482513
Archivos asociados