Artículo
Assimilation of statistical data into turbulent flows using physics-informed neural networks
Angriman, Sofia
; Cobelli, Pablo Javier
; Mininni, Pablo Daniel
; Obligado, Martín; Clark Di Leoni, Patricio
Fecha de publicación:
03/2023
Editorial:
Springer
Revista:
The European Physical Journal E
ISSN:
1292-8941
e-ISSN:
1292-895X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
When modeling turbulent flows, it is often the case that information on the forcing terms or the boundary conditions is either not available or overly complicated and expensive to implement. Instead, some flow features, such as the mean velocity profile or its statistical moments, may be accessible through experiments or observations. We present a method based on physics-informed neural networks to assimilate a given set of conditions into turbulent states. The physics-informed method helps the final state approximate a valid flow. We show examples of different statistical conditions that can be used to prepare states, motivated by experimental and atmospheric problems. Lastly, we show two ways of scaling the resolution of the prepared states. One is through the use of multiple and parallel neural networks. The other uses nudging, a synchronization-based data assimilation technique that leverages the power of specialized numerical solvers.
Palabras clave:
DATA ASSIMILATION
,
TURBULENT FLOWS
,
PHYSICS INFORMED NEURAL NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos de INST.DE FISICA DEL PLASMA
Citación
Angriman, Sofia; Cobelli, Pablo Javier; Mininni, Pablo Daniel; Obligado, Martín; Clark Di Leoni, Patricio; Assimilation of statistical data into turbulent flows using physics-informed neural networks; Springer; The European Physical Journal E; 46; 3; 3-2023; 1-9
Compartir
Altmétricas