Mostrar el registro sencillo del ítem

dc.contributor.author
Cotic, Agustina Ludmila  
dc.contributor.author
Cerfontaine, Simon  
dc.contributor.author
Slep, Leonardo Daniel  
dc.contributor.author
Elias, Benjamin  
dc.contributor.author
Troian Gautier, Ludovic  
dc.contributor.author
Cadranel, Alejandro  
dc.date.available
2024-02-27T11:14:39Z  
dc.date.issued
2023-02  
dc.identifier.citation
Cotic, Agustina Ludmila; Cerfontaine, Simon; Slep, Leonardo Daniel; Elias, Benjamin; Troian Gautier, Ludovic; et al.; Anti-Dissipative Strategies toward More Efficient Solar Energy Conversion; American Chemical Society; Journal of the American Chemical Society; 145; 9; 2-2023; 5163-5173  
dc.identifier.issn
0002-7863  
dc.identifier.uri
http://hdl.handle.net/11336/228503  
dc.description.abstract
In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. This leads to free energy losses between the initial excited state, formed after light absorption, and the active catalyst formed after the electron transfer cascade. Additional deleterious processes, such as internal conversion (IC) and vibrational relaxation (VR), also dissipate as much as 20-30% of the absorbed photon energy. Minimization of these energy losses, a holy grail in solar energy conversion and solar fuel production, is a challenging task because excited states are usually strongly coupled which results in negligible kinetic barriers and very fast dissipation. Here, we show that topological control of oligomeric {Ru(bpy)3} chromophores resulted in small excited-state electronic couplings, leading to activation barriers for IC by means of inter-ligand electron transfer of around 2000 cm-1 and effectively slowing down dissipation. Two types of excited states are populated upon visible light excitation, that is, a bridging-ligand centered metal-to-ligand charge transfer [MLCT(Lm)], and a 2,2′-bipyridine-centered MLCT [MLCT(bpy)], which lies 800-1400 cm-1 higher in energy. As a proof-of-concept, bimolecular electron transfer with tri-tolylamine (TTA) as electron donor was performed, which mimics catalyst activation by sacrificial electron donors in typical photocatalytic schemes. Both excited states were efficiently quenched by TTA. Hence, this novel strategy allows to trap higher energy excited states before IC and VR set in, saving between 100 and 170 meV. Furthermore, transient absorption spectroscopy suggests that electron transfer reactions with TTA produced the corresponding Lm•--centered and bpy•--centered reduced photosensitizers, which involve different reducing abilities, that is, −0.79 and −0.93 V versus NHE for Lm•- and bpy•-, respectively. Thus, this approach probably leads in fine to a 140 meV more potent reductant for energy conversion schemes and solar fuel production. These results lay the first stone for anti-dissipative energy conversion schemes which, in bimolecular electron transfer reactions, harness the excess energy saved by controlling dissipative conversion pathways.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DISSIPATION  
dc.subject
INTERNAL CONVERSION  
dc.subject
PHOTOCATALYSIS  
dc.subject.classification
Química Inorgánica y Nuclear  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Anti-Dissipative Strategies toward More Efficient Solar Energy Conversion  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-26T11:11:18Z  
dc.journal.volume
145  
dc.journal.number
9  
dc.journal.pagination
5163-5173  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Cotic, Agustina Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Cerfontaine, Simon. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Slep, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Elias, Benjamin. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Troian Gautier, Ludovic. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Cadranel, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Journal of the American Chemical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.2c11593  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jacs.2c11593