Artículo
Robust and unbiased estimation of the background distribution for automated quantitative imaging
Fecha de publicación:
01/2023
Editorial:
Optical Society of America
Revista:
Journal of the Optical Society of America A
ISSN:
1084-7529
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Background estimation is the first step in quantitative analysis of images. It has an impact on all subsequent analyses, in particular for segmentation and calculation of ratiometric quantities. Most methods recover only a single value such as the median or yield a biased estimation in non-trivial cases. We introduce, to our knowledge, the first method to recover an unbiased estimation of background distribution. It leverages the lack of local spatial correlation in background pixels to robustly select a subset that accurately represents the background. The resulting background distribution can be used to test for foreground membership of individual pixels or estimate confidence intervals in derived quantities.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Silberberg, Mauro; Grecco, Hernan Edgardo; Robust and unbiased estimation of the background distribution for automated quantitative imaging; Optical Society of America; Journal of the Optical Society of America A; 40; 4; 1-2023; C8-C15
Compartir
Altmétricas