Artículo
On the zeros of univariate E-polynomials
Fecha de publicación:
02/2023
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider two problems concerning real zeros of univariate E-polynomials. First, we prove an explicit upper bound for the absolute values of the zeroes of an E-polynomial defined by polynomials with inte-ger coefficients that improves the bounds known up to now. On the other hand, we extend the classical Budan—Fourier theorem for real polynomials to E-polynomials. This result gives, in particular, an upper bound for the number of real zeroes of an E-polynomial. We show this bound is sharp for particular families of these functions, which proves that a conjecture by D. Richardson is false.
Palabras clave:
BUDAN
,
E-POLYNOMIALS
,
FOURIER THEOREM
,
NUMBER OF ZEROS
,
PROBLEM OF THE LAST ROOT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barbagallo, María Laura; Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; On the zeros of univariate E-polynomials; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 65; 1; 2-2023; 33-46
Compartir
Altmétricas