Mostrar el registro sencillo del ítem

dc.contributor.author
Bocaccio, Hernan  
dc.contributor.author
Dominguez, Marisol  
dc.contributor.author
Mahler, Bettina  
dc.contributor.author
Reboreda, Juan Carlos  
dc.contributor.author
Mindlin, Gabriel  
dc.date.available
2024-02-26T12:59:14Z  
dc.date.issued
2023-12  
dc.identifier.citation
Bocaccio, Hernan; Dominguez, Marisol; Mahler, Bettina; Reboreda, Juan Carlos; Mindlin, Gabriel; Identification of dialects and individuals of globally threatened yellow cardinals using neural networks; Elsevier Science; Ecological Informatics; 78; 12-2023; 1-11  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/228374  
dc.description.abstract
Audio-based analysis of bird songs has proven to be a valuable practice for the growth of knowledge in the fields of ethology and ecology. In recent years, machine learning techniques applied to audio field recordings of bird calls have yielded successful results in studying population distributions and identification of individuals for their monitoring in a variety of bird species. This offers promising possibilities in the study of social behavior, biodiversity, and conservation strategies for birds. In this work, we trained deep learning models, directly from the sonograms of audio field recordings, to investigate the statistical properties of vocalizations in an endangered bird species, the Yellow Cardinal, Gubernatrix cristata. This research marks the first successful application of this method to an endangered species. Our results indicate the presence of vocal signatures that reflect similarities in songs of individuals that inhabit the same region, determining dialects, but which also show differences between individuals. These differences can be exploited by a deep learning classifier to discriminate the bird identities through their songs. Models trained with data labeled by regions showed a good performance in the recognition of dialects with a mean accuracy of 0.84 ± 0.04, significantly higher than the accuracy obtained by chance. Precision and recall values also reflected the classifier's ability to find alike vocal patterns in the songs of neighboring individuals. Models trained with data labeled by individuals showed an accuracy of 0.63 ± 0.03, significantly higher than that obtained by chance. However, the individual discrimination model showed greater confusion with neighboring individuals. This reflects a hierarchical structure in the characteristics of the Yellow Cardinal's vocalization, where the intra-individual variability is lower than the inter-individual variability, but it is even lower than the variability obtained when individuals inhabit different regions, providing evidence of the existence of dialects. This reinforces the results of previous works but also offers an automated method for characterizing cultural units within the species. Along with genetic data, this method could help better define management units, thereby benefiting the success of reintroduction of individuals of Yellow Cardinal recovered from the illegal trade. Moreover, the novelty of individual discrimination using neural networks for the Yellow Cardinal, which has limited data availability, shows promise for non-invasive acoustic monitoring strategies with potentially relevant implications for its conservation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIRD SPECIES CONSERVATION  
dc.subject
BIRDSONG DIALECTS  
dc.subject
DEEP LEARNING  
dc.subject
INDIVIDUAL IDENTIFICATION  
dc.subject
YELLOW CARDINAL  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Identification of dialects and individuals of globally threatened yellow cardinals using neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-22T11:05:53Z  
dc.journal.volume
78  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bocaccio, Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Dominguez, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.description.fil
Fil: Mahler, Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.description.fil
Fil: Reboreda, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina  
dc.description.fil
Fil: Mindlin, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1574954123004016  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2023.102372