Artículo
Lifting morphisms between graded Grothendieck groups of Leavitt path algebras
Fecha de publicación:
10/2023
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that any pointed, preordered module map BFgr(E)→BFgr(F) between Bowen-Franks modules of finite graphs can be lifted to a unital, graded, diagonal preserving ⁎-homomorphism Lℓ(E)→Lℓ(F) between the corresponding Leavitt path algebras over any commutative unital ring with involution ℓ. Specializing to the case when ℓ is a field, we establish the fullness part of Hazrat's conjecture about the functor from Leavitt path ℓ-algebras of finite graphs to preordered modules with order unit that maps Lℓ(E) to its graded Grothendieck group. Our construction of lifts is of combinatorial nature; we characterize the maps arising from this construction as the scalar extensions along ℓ of unital, graded ⁎-homomorphisms LZ(E)→LZ(F) that preserve a sub-⁎-semiring introduced here.
Palabras clave:
GRADED K-THEORY
,
HAZRAT'S CONJECTURES
,
LEAVITT PATH ALGEBRAS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Arnone, Guido; Lifting morphisms between graded Grothendieck groups of Leavitt path algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 631; 10-2023; 804-829
Compartir
Altmétricas