Mostrar el registro sencillo del ítem

dc.contributor.author
Aguilera Puga, Mariana d. C.  
dc.contributor.author
Cancelarich, Natalia Lorena  
dc.contributor.author
Marani, Mariela Mirta  
dc.contributor.author
de la Fuente Nunez, Cesar  
dc.contributor.author
Plisson, Fabien Gérard Christian  
dc.contributor.other
Gore, Mohini  
dc.contributor.other
Jagtap, Umesh B.  
dc.date.available
2024-02-23T17:46:13Z  
dc.date.issued
2024  
dc.identifier.citation
Aguilera Puga, Mariana d. C.; Cancelarich, Natalia Lorena; Marani, Mariela Mirta; de la Fuente Nunez, Cesar; Plisson, Fabien Gérard Christian; Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence; Springer Nature Switzerland AG; 2714; 2024; 329-351  
dc.identifier.isbn
978-1-0716-3440-0  
dc.identifier.issn
1064-3745  
dc.identifier.uri
http://hdl.handle.net/11336/228249  
dc.description.abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANTIMICROBIAL PEPTIDES  
dc.subject
MACHINE LEARNING  
dc.subject
PREDICTIVE MODELING  
dc.subject
GENERATIVE MODELING  
dc.subject
REPRESENTATION LEARNING  
dc.subject
ALGORITHMIC BIAS  
dc.subject
ANTIMICROBIAL RESISTANCE  
dc.subject
ANTIBIOTICS  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-02-22T12:55:14Z  
dc.identifier.eissn
1940-6029  
dc.journal.volume
2714  
dc.journal.pagination
329-351  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Aguilera Puga, Mariana d. C.. Cinvestav-ipn, Langebio; México  
dc.description.fil
Fil: Cancelarich, Natalia Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina  
dc.description.fil
Fil: Marani, Mariela Mirta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina  
dc.description.fil
Fil: de la Fuente Nunez, Cesar. University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Plisson, Fabien Gérard Christian. Cinvestav-ipn, Langebio; México  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-1-0716-3441-7_18  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/protocol/10.1007/978-1-0716-3441-7_18  
dc.conicet.paginas
356  
dc.source.titulo
Computational Drug Discovery and Design  
dc.conicet.nroedicion
2