Artículo
Mesoscopic analytical approach in a three state opinion model with continuous internal variable
Fecha de publicación:
03/2023
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Chaos, Solitons And Fractals
ISSN:
0960-0779
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Analytical approaches in models of opinion formation have been extensively studied either for an opinion represented as a discrete or a continuous variable. In this paper, we analyze a model which combines both approaches. The state of an agent is represented with an internal continuous variable (the leaning or propensity), that leads to a discrete public opinion: pro, against or neutral. This model can be described by a set of master equations which are a nonlinear coupled system of first order differential equations of hyperbolic type including non-local terms and non-local boundary conditions, which cannot be solved analytically. We developed an approximation to tackle this difficulty by deriving a set of master equations for the dynamics of the average leaning of agents with the same opinion, under the hypothesis of a time scale separation in the dynamics of the variables. We show that this simplified model accurately predicts the expected transition between a neutral consensus and a bi-polarized state, and also gives an excellent approximation for the dynamics of the average leaning of agents with the same opinion, even when the time separation scale hypothesis is not completely fulfilled.
Palabras clave:
MASTER EQUATIONS
,
OPINION DYNAMICS
,
POLARIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos de INST.DE FISICA DEL PLASMA
Citación
Pedraza, Lucía Inés; Pinasco, Juan Pablo; Semeshenko, Viktoriya; Balenzuela, Pablo; Mesoscopic analytical approach in a three state opinion model with continuous internal variable; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 168; 3-2023; 1-8
Compartir
Altmétricas