Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mesoscopic analytical approach in a three state opinion model with continuous internal variable

Pedraza, Lucía InésIcon ; Pinasco, Juan PabloIcon ; Semeshenko, ViktoriyaIcon ; Balenzuela, PabloIcon
Fecha de publicación: 03/2023
Editorial: Pergamon-Elsevier Science Ltd
Revista: Chaos, Solitons And Fractals
ISSN: 0960-0779
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Analytical approaches in models of opinion formation have been extensively studied either for an opinion represented as a discrete or a continuous variable. In this paper, we analyze a model which combines both approaches. The state of an agent is represented with an internal continuous variable (the leaning or propensity), that leads to a discrete public opinion: pro, against or neutral. This model can be described by a set of master equations which are a nonlinear coupled system of first order differential equations of hyperbolic type including non-local terms and non-local boundary conditions, which cannot be solved analytically. We developed an approximation to tackle this difficulty by deriving a set of master equations for the dynamics of the average leaning of agents with the same opinion, under the hypothesis of a time scale separation in the dynamics of the variables. We show that this simplified model accurately predicts the expected transition between a neutral consensus and a bi-polarized state, and also gives an excellent approximation for the dynamics of the average leaning of agents with the same opinion, even when the time separation scale hypothesis is not completely fulfilled.
Palabras clave: MASTER EQUATIONS , OPINION DYNAMICS , POLARIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 988.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228183
URL: https://linkinghub.elsevier.com/retrieve/pii/S096007792300036X
DOI: http://dx.doi.org/10.1016/j.chaos.2023.113135
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Citación
Pedraza, Lucía Inés; Pinasco, Juan Pablo; Semeshenko, Viktoriya; Balenzuela, Pablo; Mesoscopic analytical approach in a three state opinion model with continuous internal variable; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 168; 3-2023; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES